Catenation

Last updated
A nonane molecule, consisting of nine carbon atoms in a chain with hydrogen atoms surrounding it Nonane 3D spacefill.png
A nonane molecule, consisting of nine carbon atoms in a chain with hydrogen atoms surrounding it

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. [1] A chain or a ring shape may be open if its ends are not bonded to each other (an open-chain compound), or closed if they are bonded in a ring (a cyclic compound). The words to catenate and catenation reflect the Latin root catena , "chain".

Contents

Carbon

Catenation occurs most readily with carbon, which forms covalent bonds with other carbon atoms to form longer chains and structures. This is the reason for the presence of the vast number of organic compounds in nature. Carbon is most well known for its properties of catenation, with organic chemistry essentially being the study of catenated carbon structures (and known as catenae). Carbon chains in biochemistry combine any of various other elements, such as hydrogen, oxygen, and biometals, onto the backbone of carbon.

However, carbon is by no means the only element capable of forming such catenae, and several other main-group elements are capable of forming an expansive range of catenae, including hydrogen, boron, silicon, phosphorus, sulfur and halogens.

The ability of an element to catenate is primarily based on the bond energy of the element to itself, which decreases with more diffuse orbitals (those with higher azimuthal quantum number) overlapping to form the bond. Hence, carbon, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals. Catenation ability is also influenced by a range of steric and electronic factors, including the electronegativity of the element in question, the molecular orbital n and the ability to form different kinds of covalent bonds. For carbon, the sigma overlap between adjacent atoms is sufficiently strong that perfectly stable chains can be formed. With other elements this was once thought to be extremely difficult in spite of plenty of evidence to the contrary.

Hydrogen

Theories of the structure of water involve three-dimensional networks of tetrahedra and chains and rings, linked via hydrogen bonding. [2]

A polycatenated network, with rings formed from metal-templated hemispheres linked by hydrogen bonds, was reported in 2008. [3]

In organic chemistry, hydrogen bonding is known to facilitate the formation of chain structures. 4-tricyclanol C10H16O, for example, shows catenated hydrogen bonding between the hydroxyl groups, leading to the formation of helical chains; [4] crystalline isophthalic acid C8H6O4 is built up from molecules connected by hydrogen bonds, forming infinite chains. [5]

In unusual conditions, a 1-dimensional series of hydrogen molecules confined within a single wall carbon nanotube is expected to become metallic at a relatively low pressure of 163.5 GPa. This is about 40% of the ~400 GPa thought to be required to metallize ordinary hydrogen, a pressure which is difficult to access experimentally. [6]

Silicon

Silicon can form sigma bonds to other silicon atoms (and disilane is the parent of this class of compounds). However, it is difficult to prepare and isolate SinH2n+2 (analogous to the saturated alkane hydrocarbons) with n greater than about 8, as their thermal stability decreases with increases in the number of silicon atoms. Silanes higher in molecular weight than disilane decompose to polymeric polysilicon hydride and hydrogen. [7] [8] But with a suitable pair of organic substituents in place of hydrogen on each silicon it is possible to prepare polysilanes (sometimes, erroneously called polysilenes) that are analogues of alkanes. These long chain compounds have surprising electronic properties - high electrical conductivity, for example - arising from sigma delocalization of the electrons in the chain. [9]

Even silicon–silicon pi bonds are possible. However, these bonds are less stable than the carbon analogues. Disilane and longer silanes are quite reactive compared to alkanes. Disilene and disilynes are quite rare, unlike alkenes and alkynes. Examples of disilynes, long thought to be too unstable to be isolated [10] were reported in 2004. [11]

Boron

In dodecaborate(12) anion, twelve boron atoms covalently link to each other to form an icosahedral structure. Various other similar motifs are also well studied, such as boranes, carboranes and metal dicarbollides.[ citation needed ]

Nitrogen

Nitrogen, unlike its neighbor carbon, is much less likely to form chains that are stable at room temperature. Some examples of which are solid nitrogen, triazane, azide anion and triazoles. [12] [13] Even longer series with eight nitrogen atoms or more, such as 1,1'-Azobis-1,2,3-triazole, have been synthesized. These compounds have potential use as a convenient way to store large amount of energy. [14]

Phosphorus

Phosphorus chains (with organic substituents) have been prepared, although these tend to be quite fragile. Small rings or clusters are more common. [15]

Sulfur

The versatile chemistry of elemental sulfur is largely due to catenation. In the native state, sulfur exists as S8 molecules. On heating these rings open and link together giving rise to increasingly long chains, as evidenced by the progressive increase in viscosity as the chains lengthen. Also, sulfur polycations, sulfur polyanions (polysulfides) and lower sulfur oxides are all known. [16] Furthermore, selenium and tellurium show variants of these structural motifs.

Semimetallic elements

In recent years a variety of double and triple bonds between the semi-metallic elements have been reported, including silicon, germanium, arsenic, bismuth and so on. The ability of certain main group elements to catenate is currently the subject of research into inorganic polymers.

Halogen elements

Except for fluorine that can only form unstable polyfluorides [17] at low temperature, all other stable halogens (Cl, Br, I) can form several isopolyhalogen anions that are stable at room temperature, of which the most prominent example being triiodide. In all these anions, the halogen atoms of the same element bond to each other.

See also

Related Research Articles

<span class="mw-page-title-main">Functional group</span> Set of atoms in a molecule which augment its chemical and/or physical properties

In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

Carbon compounds are defined as chemical substances containing carbon. More compounds of carbon exist than any other chemical element except for hydrogen. Organic carbon compounds are far more numerous than inorganic carbon compounds. In general bonds of carbon with other elements are covalent bonds. Carbon is tetravalent but carbon free radicals and carbenes occur as short-lived intermediates. Ions of carbon are carbocations and carbanions are also short-lived. An important carbon property is catenation as the ability to form long carbon chains and rings.

<span class="mw-page-title-main">Organic compound</span> Chemical compound with carbon-hydrogen bonds

In chemistry, many authors consider an organic compound to be any chemical compound that contains carbon-hydrogen or carbon-carbon bonds, however, some authors consider an organic compound to be any chemical compound that contains carbon. The definition of "organic" versus "inorganic", and whether some other carbon-containing compounds are organic or inorganic vary from author to author, and are topics of debate. For example, carbon-containing compounds such as alkanes and its derivatives are considered organic, but many others are considered inorganic, such as halides of carbon without carbon-hydrogen and carbon-carbon bonds, and certain compounds of carbon with nitrogen and oxygen.

<span class="mw-page-title-main">Silicon</span> Chemical element, symbol Si and atomic number 14

Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive.

<span class="mw-page-title-main">Cycloalkane</span> Saturated alicyclic hydrocarbon

In organic chemistry, the cycloalkanes are the monocyclic saturated hydrocarbons. In other words, a cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring, and all of the carbon-carbon bonds are single. The larger cycloalkanes, with more than 20 carbon atoms are typically called cycloparaffins. All cycloalkanes are isomers of alkenes.

In organic chemistry, free-radical addition is an addition reaction which involves free radicals. Radical additions are known an variety of unsaturated substrates, both olefinic or aromatic and with or without heteroatoms.

<span class="mw-page-title-main">Silenes</span> Silicon compounds with an Si=Si bond

In inorganic chemistry, silenes, or disilalkenes, are silicon compounds that contain Si=Si double bonds. The parent molecule is disilene, Si2H4.

<span class="mw-page-title-main">Polysulfide</span>

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula S2−
n
. These anions are the conjugate bases of polysulfanes H2Sn. Organic polysulfides generally have the formulae R1SnR2, where R = alkyl or aryl.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

Carbon is a primary component of all known life on Earth, representing approximately 45–50% of all dry biomass. Carbon compounds occur naturally in great abundance on Earth. Complex biological molecules consist of carbon atoms bonded with other elements, especially oxygen and hydrogen and frequently also nitrogen, phosphorus, and sulfur.

<span class="mw-page-title-main">Tetrahedral molecular geometry</span> Central atom with four substituents located at the corners of a tetrahedron

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−13) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

<span class="mw-page-title-main">Binary silicon-hydrogen compounds</span>

Silanes are saturated chemical compounds with the empirical formula SixHy. They are hydrosilanes, a class of compounds that includes compounds with Si−H and other Si−X bonds. All contain tetrahedral silicon and terminal hydrides. They only have Si−H and Si−Si single bonds. The bond lengths are 146.0 pm for a Si−H bond and 233 pm for a Si−Si bond. The structures of the silanes are analogues of the alkanes, starting with silane, SiH4, the analogue of methane, continuing with disilane Si2H6, the analogue of ethane, etc. They are mainly of theoretical or academic interest.

Thiophosphates (or phosphorothioates, PS) are chemical compounds and anions with the general chemical formula PS
4−x
O3−
x
(x = 0, 1, 2, or 3) and related derivatives where organic groups are attached to one or more O or S. Thiophosphates feature tetrahedral phosphorus(V) centers.

<span class="mw-page-title-main">Disilyne</span> Chemical compound

Disilyne is a silicon hydride with the formula Si
2
H
2
. Several isomers are possible, but none are sufficiently stable to be of practical value. Substituted disilynes contain a formal silicon–silicon triple bond and as such are sometimes written R2Si2 (where R is a substituent group). They are the silicon analogues of alkynes.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

Polysilicon hydrides are polymers containing only silicon and hydrogen. They have the formula where 0.2 ≤ n ≤ 2.5 and x is the number of monomer units. The polysilicon hydrides are generally colorless or pale-yellow/ocher powders that are easily hydrolyzed and ignite readily in air. The surfaces of silicon prepared by MOCVD using silane (SiH4) consist of a polysilicon hydride.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Pauling's principle of electroneutrality states that each atom in a stable substance has a charge close to zero. It was formulated by Linus Pauling in 1948 and later revised. The principle has been used to predict which of a set of molecular resonance structures would be the most significant, to explain the stability of inorganic complexes and to explain the existence of π-bonding in compounds and polyatomic anions containing silicon, phosphorus or sulfur bonded to oxygen; it is still invoked in the context of coordination complexes. However, modern computational techniques indicate many stable compounds have a greater charge distribution than the principle predicts.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

References

  1. Oxford English Dictionary , 1st edition (1889) [http://www.oed.com/view/Entry/30197 s.v. 'chain', definition 4g
  2. Head-Gordon, Teresa; Johnson, Margaret E. (June 2006). "Tetrahedral structure or chains for liquid water". Proceedings of the National Academy of Sciences. 103 (21): 7973–7977. doi: 10.1073/pnas.0510593103 . PMC   1472414 . PMID   16698934. S2CID   20023418.
  3. Salaudeen, A. Abibat; Kilnera, C.A.; Halcrow, M.A. (2008). "A crystalline hydrogen-bonded network with a poly-catenate topology". Chem. Commun. (41): 5200–5202. doi:10.1039/B810393C. PMID   18956068.
  4. Morris, D.G. Abibat; Ryder, K.S.; Walker, A.; Muir, K.W; Hix, G.B; Maclean, E.J (2001). "Unusual synthesis and crystal structure of 4-tricyclanol". Tetrahedron Letters. 47 (2): 319–322. doi:10.1016/S0040-4039(00)01903-1.
  5. Derissen, JL (1974). "The crystal structure of isophthalic acid". Acta Crystallogr. B30 (6): 764–2765. doi:10.1107/S0567740872004844.
  6. Xia, Y. Abibat; Yang, B.; Jin, F.; Ma, Y.; Liu, X.; Zhao, M. (2019). "Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure". Nano Lett. 19 (4): 2537–2542. Bibcode:2019NanoL..19.2537X. doi:10.1021/acs.nanolett.9b00258. PMID   30884943. S2CID   83460656.
  7. W. W. Porterfield, Inorganic Chemistry: A Unified Approach, 2nd Ed.", Academic Press (1993), p. 219.
  8. Inorganic Chemistry, Holleman-Wiberg, John Wiley & Sons (2001) p. 844.
  9. Miller, R. D.; Michl, J. (1989). "Polysilane high polymers". Chemical Reviews . 89 (6): 1359. doi:10.1021/cr00096a006.
  10. Karni, M.; Apeloig, Y. (January 2002). "The quest for a stable silyne, RSi≡CR′. The effect of bulky substituents". Silicon Chemistry. 1 (1): 59–65. doi:10.1023/A:1016091614005. S2CID   97098444.
  11. Akira Sekiguchi; Rei Kinjo; Masaaki Ichinohe (September 2004). "A Stable Compound Containing a Silicon-Silicon Triple Bond". Science. 305 (5691): 1755–1757. Bibcode:2004Sci...305.1755S. doi:10.1126/science.1102209. PMID   15375262. S2CID   24416825.
  12. Vij, Ashwani; William W. Wilson; Vandana Vij; Fook S. Tham; Jeffrey A. Sheehy; Karl O. Christe (9 Jun 2001). "Polynitrogen Chemistry. Synthesis, Characterization, and Crystal Structure of Surprisingly Stable Fluoroantimonate Salts of N+
    5
    "
    . J. Am. Chem. Soc. 123 (26): 6308–6313. doi:10.1021/ja010141g. PMID   11427055. Archived from the original on 23 September 2017. Retrieved 21 August 2022.
  13. Forstel, Maksyutenko, Jones, Sun, Chen, Chang, & Kaiser. "Detection of the Elusive Triazane Molecule ([N
    3
    H
    5
    ]
    ) in the Gas Phase", ChemPhysChem, 2015, 16, 3139.
  14. Klapötke, Thomas M.; Piercey, Davin G. (2011-04-04). "1,1′-Azobis(tetrazole): A Highly Energetic Nitrogen-Rich Compound with a N 10 Chain". Inorganic Chemistry. 50 (7): 2732–2734. doi:10.1021/ic200071q. ISSN   0020-1669.
  15. Jones, R. O.; Ganteför, G.; Hunsicker, S.; Pieperhoff, P. (1995-12-08). "Structure and spectroscopy of phosphorus cluster anions: Theory (simulated annealing) and experiment (photoelectron detachment)". The Journal of Chemical Physics. 103 (22): 9549–9562. doi: 10.1063/1.469969 . ISSN   0021-9606.
  16. Shriver, Atkins. Inorganic Chemistry, Fifth Edition. W. H. Freeman and Company, New York, 2010; pp 416
  17. Wiberg, Wiberg & Holleman 2001, p. 422.

Bibliography