Binary silicon-hydrogen compounds

Last updated
Chemical structure of disilane, which is structurally similar to ethane. Disilane.png
Chemical structure of disilane, which is structurally similar to ethane.

Silanes are saturated chemical compounds with the empirical formula SixHy. They are hydrosilanes, a class of compounds that includes compounds with Si−H and other Si−X bonds. All contain tetrahedral silicon and terminal hydrides. They only have Si−H and Si−Si single bonds. The bond lengths are 146.0 pm for a Si−H bond and 233 pm for a Si−Si bond. The structures of the silanes are analogues of the alkanes, starting with silane, SiH4, the analogue of methane, continuing with disilane Si2H6, the analogue of ethane, etc. They are mainly of theoretical or academic interest. [1]

Contents

Inventory

Cyclopentasilane is structurally similar to cyclopentane, just larger. Pentasilolane.svg
Cyclopentasilane is structurally similar to cyclopentane, just larger.

The simplest isomer of a silane is the one in which the silicon atoms are arranged in a single chain with no branches. This isomer is sometimes called the n-isomer (n for "normal", although it is not necessarily the most common). However the chain of silicon atoms may also be branched at one or more silicon atoms. The number of possible isomers increases rapidly with the number of silicon atoms. The members of the series (in terms of number of silicon atoms) follow:

Silanes are named by adding the suffix -silane to the appropriate numerical multiplier prefix. Hence, disilane, Si2H6; trisilane Si3H8; tetrasilane Si4H10; pentasilane Si5H12; etc. The prefix is generally Greek, with the exceptions of nonasilane which has a Latin prefix, and undecasilane and tridecasilane which have mixed-language prefixes. Solid phase polymeric silicon hydrides called polysilicon hydrides are also known. When hydrogen in a linear polysilene polysilicon hydride is replaced with alkyl or aryl side-groups, the term polysilane is used.

3-Silylhexasilane, H3Si−SiH2−SiH(−SiH3)−SiH2−SiH2−SiH3, is the simplest chiral binary noncyclic silicon hydride.

Cyclosilanes also exist. They are structurally analogous to the cycloalkanes, with the formula SinH2n, n > 2.

Data for small silanes [1]
SilaneFormulaMelting point [°C]Boiling point [°C]Density [g cm−3] (at 25 °C)Appearance
Silane SiH4−185−112Colorless gas
Disilane Si2H6−132−14Colorless gas
Trisilane Si3H8−117530.743Colorless liquid
Cyclotrisilane  [ el ]Si3H6
Tetrasilane  [ de; ru ]Si4H10−901080.793Colorless liquid
Pentasilane  [ de; ru ]Si5H12−72.81530.827Colorless liquid
Cyclopentasilane Si5H10−10.5[ clarification needed ]194[ clarification needed ]0.963Colorless liquid
Hexasilane  [ de; ru ]Si6H14−44.7193.60.847Colorless liquid

Production

Early work was conducted by Alfred Stock and Carl Somiesky. [2] Although monosilane and disilane were already known, Stock and Somiesky discovered, beginning in 1916, the next four members of the SinH2n+2 series, up to n = 6. They also documented the formation of solid phase polymeric silicon hydrides. [3] One of their synthesis methods involved the hydrolysis of metal silicides. This method produces a mixture of silanes, which required separation on a high vacuum line. [4] [5] [6]

The silanes (SinH2n+2) are less thermally stable than alkanes (CnH2n+2). They tend to undergo dehydrogenation, yielding hydrogen and polysilanes. For this reason, the isolation of silanes higher than heptasilane has proved difficult. [7]

The Schlesinger process is used to prepare silanes by the reaction of perchlorosilanes with lithium aluminium hydride.

Applications

The single but significant application for SiH4 is in the microelectronics industry. By metal organic chemical vapor deposition, silane is converted to silicon by thermal decomposition:

SiH4 → Si + 2 H2

Hazards

Silane is explosive when mixed with air (1 – 98% SiH4[ clarification needed ]). Other lower silanes can also form explosive mixtures with air. The lighter liquid silanes are highly flammable; this risk increases with the length of the silicon chain.

Considerations for detection/risk control:

Nomenclature

The IUPAC nomenclature (systematic way of naming compounds) for silanes is based on identifying hydrosilicon chains. Unbranched, saturated hydrosilicon chains are named systematically with a Greek numerical prefix denoting the number of silicons and the suffix "-silane".

IUPAC naming conventions can be used to produce a systematic name.

The key steps in the naming of more complicated branched silanes are as follows:

The nomenclature parallels that of alkyl radicals.

Silanes can also be named like any other inorganic compound; in this naming system, silane is named silicon tetrahydride. However, with longer silanes, this becomes cumbersome.

See also

Related Research Articles

<span class="mw-page-title-main">Silane</span> Chemical compound (SiH4)

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.

<span class="mw-page-title-main">Silicon tetrachloride</span> Chemical compound

Silicon tetrachloride or tetrachlorosilane is the inorganic compound with the formula SiCl4. It is a colorless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications. It is a part of the chlorosilane family.

In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.

<span class="mw-page-title-main">Catenation</span> Bonding of atoms of the same element into chains or rings

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other, or closed if they are bonded in a ring. The words to catenate and catenation reflect the Latin root catena, "chain".

<span class="mw-page-title-main">Silenes</span> Silicon compounds with an Si=Si bond

In inorganic chemistry, silenes, or disilalkenes, are silicon compounds that contain Si=Si double bonds. The parent molecule is disilene, Si2H4.

In inorganic chemistry, chlorosilanes are a group of reactive, chlorine-containing chemical compounds, related to silane and used in many chemical processes. Each such chemical has at least one silicon-chlorine bond. Trichlorosilane is produced on the largest scale. The parent chlorosilane is silicon tetrachloride.

Disilane is a chemical compound with chemical formula Si2H6 that was identified in 1902 by Henri Moissan and Samuel Smiles (1877–1953). Moissan and Smiles reported disilane as being among the products formed by the action of dilute acids on metal silicides. Although these reactions had been previously investigated by Friedrich Woehler and Heinrich Buff between 1857 and 1858, Moissan and Smiles were the first to explicitly identify disilane. They referred to disilane as silicoethane. Higher members of the homologous series SinH2n+2 formed in these reactions were subsequently identified by Carl Somiesky and Alfred Stock.

Silicon compounds are compounds containing the element silicon (Si). As a carbon group element, silicon often forms compounds in the +4 oxidation state, though many unusual compounds have been discovered that differ from expectations based on its valence electrons, including the silicides and some silanes. Metal silicides, silicon halides, and similar inorganic compounds can be prepared by directly reacting elemental silicon or silicon dioxide with stable metals or with halogens. Silanes, compounds of silicon and hydrogen, are often used as strong reducing agents, and can be prepared from aluminum–silicon alloys and hydrochloric acid.

In chemistry, an onium ion is a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen, chalcogen, or halogen. The oldest-known onium ion, and the namesake for the class, is ammonium, NH+4, the protonated derivative of ammonia, NH3.

Hydrosilanes are tetravalent silicon compounds containing one or more Si-H bond. The parent hydrosilane is silane (SiH4). Commonly, hydrosilane refers to organosilicon derivatives. Examples include phenylsilane (PhSiH3) and triethoxysilane ((C2H5O)3SiH). Polymers and oligomers terminated with hydrosilanes are resins that are used to make useful materials like caulks.

Trisilane is the silane with the formula H2Si(SiH3)2. A liquid at standard temperature and pressure, it is a silicon analogue of propane. In contrast with propane, however, trisilane ignites spontaneously in air.

Polysilicon hydrides are polymers containing only silicon and hydrogen. They have the formula where 0.2 ≤ n ≤ 2.5 and x is the number of monomer units. The polysilicon hydrides are generally colorless or pale-yellow/ocher powders that are easily hydrolyzed and ignite readily in air. The surfaces of silicon prepared by MOCVD using silane (SiH4) consist of a polysilicon hydride.

<span class="mw-page-title-main">Polysilane</span>

Polysilanes are organosilicon compounds with the formula (R2Si)n. They are relatives of traditional organic polymers but their backbones are composed of silicon atoms. They exhibit distinctive optical and electrical properties. They are mainly used as precursors to silicon carbide. The simplest polysilane would be (SiH2)n, which is mainly of theoretical, not practical interest.

<span class="mw-page-title-main">Digermane</span> Chemical compound

Digermane is an inorganic compound with the chemical formula Ge2H6. One of the few hydrides of germanium, it is a colourless liquid. Its molecular geometry is similar to ethane.

The dehydrogenative coupling of silanes is a reaction type for the formation of Si-Si bonds. Although never commercialized, the reaction has been demonstrated for the synthesis of certain disilanes as well as polysilanes. These reactions generally require catalysts.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

In organosilicon chemistry, silanes are a diverse class of charge-neutral organic compounds with the general formula SiR4. The R substituents can any combination of organic or inorganic groups. Most silanes contain Si-C bonds, and are discussed under organosilicon compounds. Some contain Si-H bonds and are discussed under hydrosilanes.

In chemistry, transition metal silyl complexes describe coordination complexes in which a transition metal is bonded to an anionic silyl ligand, forming a metal-silicon sigma bond. This class of complexes are numerous and some are technologically significant as intermediates in hydrosilylation. These complexes are a subset of organosilicon compounds.

<span class="mw-page-title-main">Silanide</span> Anionic molecule derived from silane

A silanide is a chemical compound containing an anionic silicon(IV) centre, the parent ion being SiH−3. The hydrogen atoms can also be substituted to produce more complex derivative anions such as tris(trimethylsilyl)silanide (hypersilyl), tris(tert-butyl)silanide, tris(pentafluoroethyl)silanide, or triphenylsilanide. The simple silanide ion can also be called trihydridosilanide or silyl hydride.

<span class="mw-page-title-main">Silylgermane</span> Chemical compound

Silylgermane is an inorganic compound with the chemical formula H3Si−GeH3. It is a colorless gas with an unpleasant odor. It is unstable in air. It is very flammable, very toxic and corrosive. It reacts with alkali liberating hydrogen.

References

  1. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. E. Wiberg, Alfred Stock and the Renaissance of Inorganic Chemistry," Pure Appl. Chem., Vol. 49 (1977) pp. 691-700.
  3. J. W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. VI, Longman, Green and Co. (1947) pp. 223 - 227.
  4. Hydrides of Boron and Silicon. Ithaca (USA) 1933.
  5. Stock, A.; Stiebeler, P.; Zeidler, F. (1923). "Siliciumwasserstoffe, XVI. Die höheren Siliciumhydride". Ber. Dtsch. Chem. Ges. B. 56B: 1695–1705. doi:10.1002/cber.19230560735.
  6. P. W. Schenk (1963). "Silanes SiH4 (Si2H6, Si3H8)". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 1. NY, NY: Academic Press. pp. 679–680.
  7. W. W. Porterfield "Inorganic Chemistry: A Unified Approach," Academic Press (1993) p. 219.