Names | |||
---|---|---|---|
Preferred IUPAC name Methylidyne [1] | |||
Systematic IUPAC name | |||
Identifiers | |||
3D model (JSmol) | |||
7801830 | |||
ChEBI | |||
24689 | |||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
CH, CH•, CH3• | |||
Molar mass | 13.0186 g mol−1 | ||
Appearance | Colourless gas | ||
Reacts | |||
Thermochemistry | |||
Std molar entropy (S⦵298) | 183.04 J K−1 mol−1 | ||
Std enthalpy of formation (ΔfH⦵298) | 594.13 kJ mol−1 | ||
Related compounds | |||
Related compounds | Methyl (CH3) Methylene (CH2) Carbide (C) | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Methylidyne, or (unsubstituted) carbyne, is an organic compound whose molecule consists of a single hydrogen atom bonded to a carbon atom. It is the parent compound of the carbynes, which can be seen as obtained from it by substitution of other functional groups for the hydrogen.
The carbon atom is left with either one or three unpaired electrons (unsatisfied valence bonds), depending on the molecule's excitation state; making it a radical. Accordingly, the chemical formula can be CH• or CH3• (also written as ⫶CH); each dot representing an unpaired electron. The corresponding systematic names are methylylidene or hydridocarbon(•), and methanetriyl or hydridocarbon(3•). However, the formula is often written simply as CH.
Methylidyne is a highly reactive gas, that is quickly destroyed in ordinary conditions but is abundant in the interstellar medium (and was one of the first molecules to be detected there). [4]
The trivial name carbyne is the preferred IUPAC name.
Following the substitutive nomenclature, the molecule is viewed as methane with three hydrogen atoms removed, yielding the systematic name "methylidyne".
Following the additive nomenclature, the molecule is viewed as a hydrogen atom bonded to a carbon atom, yielding the name "hydridocarbon".
By default, these names pay no regard to the excitation state of the molecule. When that attribute is considered, the states with one unpaired electron are named "methylylidene" or "hydridocarbon(•)", whereas the excited states with three unpaired electrons are named "methanetriyl" or "hydridocarbon(3•)".
As an odd-electron species, CH is a radical. The ground state is a doublet (X2Π). The first two excited states are a quartet (with three unpaired electrons) (a4Σ−) and a doublet (A2Δ). The quartet lies at 71 kJ/mol above the ground state. [5]
Reactions of the doublet radical with non-radical species involves insertion or addition:
whereas reactions of the quartet radical generally involves only abstraction:
Methylidyne can bind to metal atoms as tridentate ligand in coordination complexes. An example is methylidynetricobaltnonacarbonyl HCCo
3(CO)
9. [6]
Methylidyne-like species are implied intermediates in the Fischer–Tropsch process, the hydrogenation of CO to produce hydrocarbons. Methylidyne entities are assumed to bond to the catalyst's surface. A hypothetical sequence is: [6]
The MnCH intermediate has a tridentate methylidine ligand. The methylene ligand (H2C) is then poised couple to CO or to another methylene, thereby growing the C–C chain. [7]
The methylylidyne group can exhibit both Lewis acidic and Lewis basic character. [8] Such behavior is only of theoretical interest since it is not possible to produce methylidyne.
In October 2016, astronomers reported that the methylidyne radical ⫶CH, the carbon-hydrogen positive ion :CH+, and the carbon ion ⫶C+ are the result of ultraviolet light from stars, rather than in other ways, such as the result of turbulent events related to supernovas and young stars, as thought earlier. [9]
In organic chemistry, an alkane, or paraffin, is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane, where n = 1, to arbitrarily large and complex molecules, like pentacontane or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane.
In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.
In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.
Methyl radical is an organic compound with the chemical formula CH•
3. It is a metastable colourless gas, which is mainly produced in situ as a precursor to other hydrocarbons in the petroleum cracking industry. It can act as either a strong oxidant or a strong reductant, and is quite corrosive to metals.
In organic chemistry, a methine group or methine bridge is a trivalent functional group =CH−, derived formally from methane. It consists of a carbon atom bound by two single bonds and one double bond, where one of the single bonds is to a hydrogen. The group is also called methyne or methene, but its IUPAC systematic name is methylylidene or methanylylidene.
In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.
In chemistry, a nitrene or imene is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and monovalent, so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet. A nitrene is a reactive intermediate and is involved in many chemical reactions. The simplest nitrene, HN, is called imidogen, and that term is sometimes used as a synonym for the nitrene class.
In organic chemistry, a carbyne is a general term for any compound whose structure consists of an electrically neutral carbon atom connected by a single covalent bond and has three non-bonded electrons. The carbon atom has either one or three unpaired electrons, depending on its excitation state; making it a radical. The chemical formula can be written R−C· or R−C3·, or just CH.
A transition metal carbene complex is an organometallic compound featuring a divalent carbon ligand, itself also called a carbene. Carbene complexes have been synthesized from most transition metals and f-block metals, using many different synthetic routes such as nucleophilic addition and alpha-hydrogen abstraction. The term carbene ligand is a formalism since many are not directly derived from carbenes and most are much less reactive than lone carbenes. Described often as =CR2, carbene ligands are intermediate between alkyls (−CR3) and carbynes (≡CR). Many different carbene-based reagents such as Tebbe's reagent are used in synthesis. They also feature in catalytic reactions, especially alkene metathesis, and are of value in both industrial heterogeneous and in homogeneous catalysis for laboratory- and industrial-scale preparation of fine chemicals.
Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.
In spectroscopy and quantum chemistry, the multiplicity of an energy level is defined as 2S+1, where S is the total spin angular momentum. States with multiplicity 1, 2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and quintets.
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule.
Cyclopropenylidene, or c-C3H2, is a partially aromatic molecule belonging to a highly reactive class of organic molecules known as carbenes. On Earth, cyclopropenylidene is only seen in the laboratory due to its reactivity. However, cyclopropenylidene is found in significant concentrations in the interstellar medium (ISM) and on Saturn's moon Titan. Its C2v symmetric isomer, propadienylidene (CCCH2) is also found in the ISM, but with abundances about an order of magnitude lower. A third C2 symmetric isomer, propargylene (HCCCH), has not yet been detected in the ISM, most likely due to its low dipole moment.
Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.
Methylene is an organic compound with the chemical formula CH
2. It is a colourless gas that fluoresces in the mid-infrared range, and only persists in dilution, or as an adduct.
A metal carbido complex is a coordination complex that contains a carbon atom as a ligand. They are analogous to metal nitrido complexes. Carbido complexes are a molecular subclass of carbides, which are prevalent in organometallic and inorganic chemistry. Carbido complexes represent models for intermediates in Fischer–Tropsch synthesis, olefin metathesis, and related catalytic industrial processes. Ruthenium-based carbido complexes are by far the most synthesized and characterized to date. Although, complexes containing chromium, gold, iron, nickel, molybdenum, osmium, rhenium, and tungsten cores are also known. Mixed-metal carbides are also known.
In organic chemistry, a methylene bridge, methylene spacer, or methanediyl group is any part of a molecule with formula −CH2−; namely, a carbon atom bound to two hydrogen atoms and connected by single bonds to two other distinct atoms in the rest of the molecule. It is the repeating unit in the skeleton of the unbranched alkanes.
Iron(II) hydride, systematically named iron dihydride and poly(dihydridoiron) is solid inorganic compound with the chemical formula (FeH
2)
n (also written ([FeH
2])n or FeH
2). ). It is kinetically unstable at ambient temperature, and as such, little is known about its bulk properties. However, it is known as a black, amorphous powder, which was synthesised for the first time in 2014.
In organic chemistry, a methylidyne group or just methylidyne is a neutral part of a molecule with formula ≡CH, consisting of a carbon atom bonded to a hydrogen atom by one single bond and to the rest of the molecule by one triple bond. For example, a methylidyne group is present in n-methylidyne-1-hexanaminium, H3C−(CH2)5−N+≡CH.