Hydrogen isocyanide

Last updated
Hydrogen isocyanide
Hydrogen cyanide bonding Hydrogen Isocyanide.svg
Hydrogen cyanide bonding
Hydrogen cyanide space filling Hydrogen-isocyanide-3D-vdW.png
Hydrogen cyanide space filling
Names
IUPAC names
hydrogen isocyanide
azanylidyniummethanide
Other names
isohydrocyanic acid
hydroisocyanic acid
isoprussic acid
Identifiers
3D model (JSmol)
2069401
ChEBI
ChemSpider
113
PubChem CID
  • InChI=1S/CHN/c1-2/h2H Yes check.svgY
    Key: QIUBLANJVAOHHY-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/CHN/c1-2/h2H
  • [C-]#[NH+]
Properties
HNC
Molar mass 27.03 g/mol
Conjugate acid Hydrocyanonium
Conjugate base Cyanide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hydrogen isocyanide is a chemical with the molecular formula HNC. It is a minor tautomer of hydrogen cyanide (HCN). Its importance in the field of astrochemistry is linked to its ubiquity in the interstellar medium.

Contents

Nomenclature

Both hydrogen isocyanide and azanylidyniummethanide are correct IUPAC names for HNC. There is no preferred IUPAC name. The second one is according to the substitutive nomenclature rules, derived from the parent hydride azane (NH3) and the anion methanide (CH3). [1]

Molecular properties

Hydrogen isocyanide (HNC) is a linear triatomic molecule with C∞v point group symmetry. It is a zwitterion and an isomer of hydrogen cyanide (HCN). [2] Both HNC and HCN have large, similar dipole moments, with μHNC = 3.05 Debye and μHCN = 2.98 Debye respectively. [3] These large dipole moments facilitate the easy observation of these species in the interstellar medium.

HNC−HCN tautomerism

As HNC is higher in energy than HCN by 3920 cm−1 (46.9 kJ/mol), one might assume that the two would have an equilibrium ratio at temperatures below 100 Kelvin of 10−25. [4] However, observations show a very different conclusion; is much higher than 10−25, and is in fact on the order of unity in cold environments. This is because of the potential energy path of the tautomerization reaction; there is an activation barrier on the order of roughly 12,000 cm−1 for the tautomerization to occur, which corresponds to a temperature at which HNC would already have been destroyed by neutral-neutral reactions. [5]

Spectral properties

In practice, HNC is almost exclusively observed astronomically using the J = 1→0 transition. This transition occurs at ~90.66 GHz, which is a point of good visibility in the atmospheric window, thus making astronomical observations of HNC particularly simple. Many other related species (including HCN) are observed in roughly the same window. [6] [7]

Significance in the interstellar medium

HNC is intricately linked to the formation and destruction of numerous other molecules of importance in the interstellar medium—aside from the obvious partners HCN, protonated hydrogen cyanide (HCNH+), and cyanide (CN), HNC is linked to the abundances of many other compounds, either directly or through a few degrees of separation. As such, an understanding of the chemistry of HNC leads to an understanding of countless other species—HNC is an integral piece in the complex puzzle representing interstellar chemistry.

Furthermore, HNC (alongside HCN) is a commonly used tracer of dense gas in molecular clouds. Aside from the potential to use HNC to investigate gravitational collapse as the means of star formation, HNC abundance (relative to the abundance of other nitrogenous molecules) can be used to determine the evolutionary stage of protostellar cores. [3]

The HCO+/HNC line ratio is used to good effect as a measure of density of gas. [8] This information provides great insight into the mechanisms of the formation of (Ultra-)Luminous Infrared Galaxies ((U)LIRGs), as it provides data on the nuclear environment, star formation, and even black hole fueling. Furthermore, the HNC/HCN line ratio is used to distinguish between photodissociation regions and X-ray-dissociation regions on the basis that [HNC]/[HCN] is roughly unity in the former, but greater than unity in the latter.

The study of HNC is relatively straightforward, which is a major motivation for its research. Its J = 1→0 transition occurs in a clear portion of the atmospheric window, and it has numerous isotopomers that are easily studied. Additionally, its large dipole moment makes observations particularly simple. Moreover, HNC is a fundamentally simple molecule in its molecular nature. This makes the study of the reaction pathways that lead to its formation and destruction a good means of obtaining insight to the workings of these reactions in space. Furthermore, the study of the tautomerization of HNC to HCN (and vice versa), which has been studied extensively, has been suggested as a model by which more complicated isomerization reactions can be studied. [5] [9] [10]

Chemistry in the interstellar medium

HNC is found primarily in dense molecular clouds, though it is ubiquitous in the interstellar medium. Its abundance is closely linked to the abundances of other nitrogen-containing compounds. [11] HNC is formed primarily through the dissociative recombination of HNCH+ and H2NC+, and it is destroyed primarily through ion-neutral reactions with H+
3
and C+. [12] [13] Rate calculations were done at 3.16 × 105 years, which is considered early time, and at 20 K, which is a typical temperature for dense molecular clouds. [14] [15]

Formation Reactions
Reactant 1Reactant 2Product 1Product 2Rate constantRate/[H2]2Relative Rate
HCNH+eHNCH9.50×10−84.76×10−253.4
H2NC+eHNCH1.80×10−71.39×10−251.0
Destruction Reactions
Reactant 1Reactant 2Product 1Product 2Rate constantRate/[H2]2Relative Rate
H+3HNCHCNH+H28.10×10−91.26×10−241.7
C+HNCC2N+H3.10×10−97.48×10−251.0

These four reactions are merely the four most dominant, and thus the most significant in the formation of the HNC abundances in dense molecular clouds; there are dozens more reactions for the formation and destruction of HNC. Though these reactions primarily lead to various protonated species, HNC is linked closely to the abundances of many other nitrogen containing molecules, for example, NH3 and CN. [11] The abundance HNC is also inexorably linked to the abundance of HCN, and the two tend to exist in a specific ratio based on the environment. [12] This is because the reactions that form HNC can often also form HCN, and vice versa, depending on the conditions in which the reaction occurs, and also that there exist isomerization reactions for the two species.

Astronomical detections

HCN (not HNC) was first detected in June 1970 by L. E. Snyder and D. Buhl using the 36-foot radio telescope of the National Radio Astronomy Observatory. [16] The main molecular isotope, H12C14N, was observed via its J = 1→0 transition at 88.6 GHz in six different sources: W3 (OH), Orion A, Sgr A(NH3A), W49, W51, DR 21(OH). A secondary molecular isotope, H13C14N, was observed via its J = 1→0 transition at 86.3 GHz in only two of these sources: Orion A and Sgr A(NH3A). HNC was then later detected extragalactically in 1988 using the IRAM 30-m telescope at the Pico de Veleta in Spain. [17] It was observed via its J = 1→0 transition at 90.7 GHz toward IC 342.

A number of detections have been made towards the end of confirming the temperature dependence of the abundance ratio of [HNC]/[HCN]. A strong fit between temperature and the abundance ratio would allow observers to spectroscopically detect the ratio and then extrapolate the temperature of the environment, thus gaining great insight into the environment of the species. The abundance ratio of rare isotopes of HNC and HCN along the OMC-1 varies by more than an order of magnitude in warm regions versus cold regions. [18] In 1992, the abundances of HNC, HCN, and deuterated analogs along the OMC-1 ridge and core were measured and the temperature dependence of the abundance ratio was confirmed. [6] A survey of the W 3 Giant Molecular Cloud in 1997 showed over 24 different molecular isotopes, comprising over 14 distinct chemical species, including HNC, HN13C, and H15NC. This survey further confirmed the temperature dependence of the abundance ratio, [HNC]/[HCN], this time even confirming the dependence of the isotopomers. [19]

These are not the only detections of importance of HNC in the interstellar medium. In 1997, HNC was observed along the TMC-1 ridge and its abundance relative to HCO+ was found to be constant along the ridge—this led credence to the reaction pathway that posits that HNC is derived initially from HCO+. [7] One significant astronomical detection that demonstrated the practical use of observing HNC occurred in 2006, when abundances of various nitrogenous compounds (including HN13C and H15NC) were used to determine the stage of evolution of the protostellar core Cha-MMS1 based on the relative magnitudes of the abundances. [3]

On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON). [20] [21]

See also

Related Research Articles

<span class="mw-page-title-main">Molecular cloud</span> Type of interstellar cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, H2), and the formation of H II regions. This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

<span class="mw-page-title-main">Hydrogen cyanide</span> Highly toxic chemical with the formula HCN

Hydrogen cyanide is a chemical compound with the formula HCN and structural formula H−C≡N. It is a highly toxic and flammable liquid that boils slightly above room temperature, at 25.6 °C (78.1 °F). HCN is produced on an industrial scale and is a highly valued precursor to many chemical compounds ranging from polymers to pharmaceuticals. Large-scale applications are for the production of potassium cyanide and adiponitrile, used in mining and plastics, respectively. It is more toxic than solid cyanide compounds due to its volatile nature. A solution of hydrogen cyanide in water, represented as HCN, is called hydrocyanic acid. The salts of the cyanide anion are known as cyanides.

In chemistry, hydronium is the cation [H3O]+, also written as H3O+, the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved in water, as Arrhenius acid molecules in solution give up a proton to the surrounding water molecules. In fact, acids must be surrounded by more than a single water molecule in order to ionize, yielding aqueous H+ and conjugate base.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Hydroxyl radical</span> Neutral form of hydroxide, OH•

The hydroxyl radical, HO, is the neutral form of the hydroxide ion (HO). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are produced from the decomposition of hydroperoxides (ROOH) or, in atmospheric chemistry, by the reaction of excited atomic oxygen with water. It is also an important radical formed in radiation chemistry, since it leads to the formation of hydrogen peroxide and oxygen, which can enhance corrosion and stress corrosion cracking in coolant systems subjected to radioactive environments. Hydroxyl radicals are also produced during UV-light dissociation of H2O2 (suggested in 1879) and likely in Fenton chemistry, where trace amounts of reduced transition metals catalyze peroxide-mediated oxidations of organic compounds.

<span class="mw-page-title-main">Trihydrogen cation</span> Polyatomic ion (H₃, charge +1)

The trihydrogen cation or protonated molecular hydrogen is a cation with formula H+3, consisting of three hydrogen nuclei (protons) sharing two electrons.

<span class="mw-page-title-main">PAH world hypothesis</span> Hypothesis about the origin of life

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.

<span class="mw-page-title-main">Ethynyl radical</span> Hydrocarbon compound (•CCH)

The ethynyl radical (systematically named λ3-ethyne and hydridodicarbon(CC)) is an organic compound with the chemical formula C≡CH (also written [CCH] or C
2
H
). It is a simple molecule that does not occur naturally on Earth but is abundant in the interstellar medium. It was first observed by electron spin resonance isolated in a solid argon matrix at liquid helium temperatures in 1963 by Cochran and coworkers at the Johns Hopkins Applied Physics Laboratory. It was first observed in the gas phase by Tucker and coworkers in November 1973 toward the Orion Nebula, using the NRAO 11-meter radio telescope. It has since been detected in a large variety of interstellar environments, including dense molecular clouds, bok globules, star forming regions, the shells around carbon-rich evolved stars, and even in other galaxies.

Sagittarius B2 is a giant molecular cloud of gas and dust that is located about 120 parsecs (390 ly) from the center of the Milky Way. This complex is the largest molecular cloud in the vicinity of the core and one of the largest in the galaxy, spanning a region about 45 parsecs (150 ly) across. The total mass of Sgr B2 is about 3 million times the mass of the Sun. The mean hydrogen density within the cloud is 3000 atoms per cm3, which is about 20–40 times denser than a typical molecular cloud.

Propynylidyne is a chemical compound that has been identified in interstellar space.

Interstellar formaldehyde (a topic relevant to astrochemistry) was first discovered in 1969 by L. Snyder et al. using the National Radio Astronomy Observatory. Formaldehyde (H2CO) was detected by means of the 111 - 110 ground state rotational transition at 4830 MHz. On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).

<span class="mw-page-title-main">Diazenylium</span> Chemical compound

Diazenylium is the chemical N2H+, an inorganic cation that was one of the first ions to be observed in interstellar clouds. Since then, it has been observed for in several different types of interstellar environments, observations that have several different scientific uses. It gives astronomers information about the fractional ionization of gas clouds, the chemistry that happens within those clouds, and it is often used as a tracer for molecules that are not as easily detected (such as N2). Its 1–0 rotational transition occurs at 93.174 GHz, a region of the spectrum where Earth's atmosphere is transparent and it has a significant optical depth in both cold and warm clouds so it is relatively easy to observe with ground-based observatories. The results of N2H+ observations can be used not only for determining the chemistry of interstellar clouds, but also for mapping the density and velocity profiles of these clouds.

<span class="mw-page-title-main">Protonated hydrogen cyanide</span> Chemical compound

HCNH+, also known as protonated hydrogen cyanide, is a molecular ion of astrophysical interest. It also exists in the condensed state when formed by superacids.

<span class="mw-page-title-main">Cyclopropenylidene</span> Chemical compound

Cyclopropenylidene, or c-C3H2, is a partially aromatic molecule belonging to a highly reactive class of organic molecules known as carbenes. On Earth, cyclopropenylidene is only seen in the laboratory due to its reactivity. However, cyclopropenylidene is found in significant concentrations in the interstellar medium (ISM) and on Saturn's moon Titan. Its C2v symmetric isomer, propadienylidene (CCCH2) is also found in the ISM, but with abundances about an order of magnitude lower. A third C2 symmetric isomer, propargylene (HCCCH), has not yet been detected in the ISM, most likely due to its low dipole moment.

<span class="mw-page-title-main">Cyano radical</span> Chemical compound

The cyano radical (or cyanido radical) is a radical with molecular formula CN, sometimes written CN. The cyano radical was one of the first detected molecules in the interstellar medium, in 1938. Its detection and analysis was influential in astrochemistry. The discovery was confirmed with a coudé spectrograph, which was made famous and credible due to this detection. ·CN has been observed in both diffuse clouds and dense clouds. Usually, CN is detected in regions with hydrogen cyanide, hydrogen isocyanide, and HCNH+, since it is involved in the creation and destruction of these species (see also Cyanogen).

In organic chemistry, cyanopolyynes are a family of organic compounds with the chemical formula HCnN (n = 3,5,7,…) and the structural formula H−[C≡C−]nC≡N (n = 1,2,3,…). Structurally, they are polyynes with a cyano group (−C≡N) covalently bonded to one of the terminal acetylene units (H−C≡C).

<span class="mw-page-title-main">Imidogen</span> Inorganic radical with the chemical formula NH

Imidogen is an inorganic compound with the chemical formula NH. Like other simple radicals, it is highly reactive and consequently short-lived except as a dilute gas. Its behavior depends on its spin multiplicity.

Tricarbon monosulfide (C3S) or tricarbon sulfur is a reactive molecular substance that has been detected in outer space. Tricarbon monosulfide is a heterocumulene or thiocumulene, consisting of a straight chain of three carbon atoms and a terminal sulfur atom.

<span class="mw-page-title-main">C/2000 WM1 (LINEAR)</span>

C/2000 WM1 (LINEAR) is a non-periodic comet discovered by LINEAR on 16 December 2000. The comet brightened to an apparent magnitude of about 2.5.

References

  1. The suffix ylidyne refers to the loss of three hydrogen atoms from the nitrogen atom in azanium ([NH4]+) See the IUPAC Red Book 2005 Table III, "Suffixes and endings", p. 257.
  2. Pau, Chin Fong; Hehre, Warren J. (1982-02-01). "Heat of formation of hydrogen isocyanide by ion cyclotron double resonance spectroscopy". The Journal of Physical Chemistry. 86 (3): 321–322. doi:10.1021/j100392a006. ISSN   0022-3654.
  3. 1 2 3 Tennekes, P. P.; et al. (2006). "HCN and HNC mapping of the protostellar core Chamaeleon-MMS1". Astronomy and Astrophysics. 456 (3): 1037–1043. arXiv: astro-ph/0606547 . Bibcode:2006A&A...456.1037T. doi:10.1051/0004-6361:20040294. S2CID   54492819.
  4. Hirota, T.; et al. (1998). "Abundances of HCN and HNC in Dark Cloud Cores". Astrophysical Journal. 503 (2): 717–728. Bibcode:1998ApJ...503..717H. doi: 10.1086/306032 .
  5. 1 2 Bentley, J. A.; et al. (1993). "Highly vibrationally excited HCN/HNC: Eigenvalues, wave functions, and stimulated emission pumping spectra". J. Chem. Phys. 98 (7): 5209. Bibcode:1993JChPh..98.5207B. doi: 10.1063/1.464921 .
  6. 1 2 Schilke, P.; et al. (1992). "A study of HCN, HNC and their isotopomers in OMC-1. I. Abundances and chemistry". Astronomy and Astrophysics. 256: 595–612. Bibcode:1992A&A...256..595S.
  7. 1 2 Pratap, P.; et al. (1997). "A Study of the Physics and Chemistry of TMC-1". Astrophysical Journal. 486 (2): 862–885. Bibcode:1997ApJ...486..862P. doi: 10.1086/304553 . PMID   11540493.
  8. Loenen, A. F.; et al. (2007). "Molecular properties of (U)LIRGs: CO, HCN, HNC and HCO+". Proceedings IAU Symposium. 242: 1–5. arXiv: 0709.3423 . Bibcode:2007IAUS..242..462L. doi:10.1017/S1743921307013609. S2CID   14398456.
  9. Skurski, P.; et al. (2001). "Ab initio electronic structure of HCN and HNC dipole-bound anions and a description of electron loss upon tautomerization". J. Chem. Phys. 114 (17): 7446. Bibcode:2001JChPh.114.7443S. doi:10.1063/1.1358863.
  10. Jakubetz, W.; Lan, B. L. (1997). "A simulation of ultrafast state-selective IR-laser-controlled isomerization of hydrogen cyanide based on global 3D ab initio potential and dipole surfaces". Chem. Phys. 217 (2–3): 375–388. Bibcode:1997CP....217..375J. doi:10.1016/S0301-0104(97)00056-6.
  11. 1 2 Turner, B. E.; et al. (1997). "The Physics and Chemistry of Small Translucent Molecular Clouds. VIII. HCN and HNC". Astrophysical Journal. 483 (1): 235–261. Bibcode:1997ApJ...483..235T. doi: 10.1086/304228 .
  12. 1 2 Hiraoka, K.; et al. (2006). "How are CH3OH, HNC/HCN, and NH3 Formed in the Interstellar Medium?". AIP Conf. Proc. 855: 86–99. Bibcode:2006AIPC..855...86H. doi:10.1063/1.2359543.
  13. Doty, S. D.; et al. (2004). "Physical-chemical modeling of the low-mass protostar IRAS 16293-2422". Astronomy and Astrophysics. 418 (3): 1021–1034. arXiv: astro-ph/0402610 . Bibcode:2004A&A...418.1021D. doi:10.1051/0004-6361:20034476. S2CID   2960790.
  14. "The UMIST Database for Astrochemistry".
  15. Millar, T. J.; et al. (1997). "The UMIST database for astrochemistry 1995". Astronomy and Astrophysics Supplement Series. 121: 139–185. arXiv: 1212.6362 . Bibcode:1997A&AS..121..139M. doi:10.1051/aas:1997118.
  16. Snyder, L. E.; Buhl, D. (1971). "Observations of Radio Emission from Interstellar Hydrogen Cyanide". Astrophysical Journal. 163: L47–L52. Bibcode:1971ApJ...163L..47S. doi:10.1086/180664.
  17. Henkel, C.; et al. (1988). "Molecules in external galaxies: the detection of CN, C2H, and HNC, and the tentative detection of HC3N". Astronomy and Astrophysics. 201: L23–L26. Bibcode:1988A&A...201L..23H.
  18. Goldsmith, P. F.; et al. (1986). "Variations in the HCN/HNC Abundance Ratio in the Orion Molecular Cloud". Astrophysical Journal. 310 (1): 383–391. Bibcode:1986ApJ...310..383G. doi:10.1086/164692. PMID   11539669.
  19. Helmich, F. P.; van Dishoeck, E. F. (1997). "Physical and chemical variations within the W3 star-forming region". Astronomy and Astrophysics. 124 (2): 205–253. Bibcode:1997A&AS..124..205H. doi: 10.1051/aas:1997357 . hdl: 1887/2219 .
  20. Zubritsky, Elizabeth; Neal-Jones, Nancy (11 August 2014). "RELEASE 14-038 - NASA's 3-D Study of Comets Reveals Chemical Factory at Work". NASA . Retrieved 12 August 2014.
  21. Cordiner, M.A.; et al. (11 August 2014). "Mapping the Release of Volatiles in the Inner Comae of Comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) Using the Atacama Large Millimeter/Submillimeter Array". The Astrophysical Journal . 792 (1): L2. arXiv: 1408.2458 . Bibcode:2014ApJ...792L...2C. doi:10.1088/2041-8205/792/1/L2. S2CID   26277035.