Acrolein

Last updated
Acrolein
Acrolein-s-trans-2D-w.png
Acrolein-s-trans-2D-skeletal.png
Acrolein-s-trans-GED-MW-3D-bs-17.png
Acrolein-s-trans-GED-MW-3D-sf.png
Names
Preferred IUPAC name
Prop-2-enal
Other names
Acraldehyde [1]
Acrylic aldehyde [1]
Allyl aldehyde [1]
Ethylene aldehyde
Acrylaldehyde [1]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.141 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-453-4
KEGG
PubChem CID
RTECS number
  • AS1050000
UNII
UN number 1092
  • InChI=1S/C3H4O/c1-2-3-4/h2-3H,1H2 Yes check.svgY
    Key: HGINCPLSRVDWNT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H4O/c1-2-3-4/h2-3H,1H2
    Key: HGINCPLSRVDWNT-UHFFFAOYAQ
  • O=CC=C
  • C=CC=O
Properties
C3H4O
Molar mass 56.064 g·mol−1
AppearanceColorless to yellow liquid. Colorless gas in smoke.
Odor Acrid, Foul, Irritating
Density 0.839 g/mL
Melting point −88 °C (−126 °F; 185 K)
Boiling point 53 °C (127 °F; 326 K)
Appreciable (> 10%)
Vapor pressure 210 mmHg [1]
Hazards [2]
Occupational safety and health (OHS/OSH):
Main hazards
Highly poisonous. Causes severe irritation to exposed membranes. Extremely flammable liquid and vapor.
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H225, H300, H311, H314, H330, H410
P210, P233, P240, P241, P242, P243, P260, P264, P270, P271, P273, P280, P284, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P361, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
4
3
3
Flash point −26 °C (−15 °F; 247 K)
278 °C (532 °F; 551 K)
Explosive limits 2.8-31% [1]
Lethal dose or concentration (LD, LC):
875 ppm (mouse, 1 min)
175 ppm (mouse, 10 min)
150 ppm (dog, 30 min)
8 ppm (rat, 4 hr)
375 ppm (rat, 10 min)
25.4 ppm (hamster, 4 hr)
131 ppm (rat, 30 min) [3]
674 ppm (cat, 2 hr) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.1 ppm (0.25 mg/m3) [1]
REL (Recommended)
TWA 0.1 ppm (0.25 mg/m3) ST 0.3 ppm (0.8 mg/m3) [1]
IDLH (Immediate danger)
2 ppm [1]
Safety data sheet (SDS) Sigma-Aldrich SDS
Related compounds
Related alkenals
Crotonaldehyde

cis-3-Hexenal
(E,E)-2,4-Decadienal

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colorless liquid with a foul and acrid aroma. The smell of burnt fat (as when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine.

Contents

History

Acrolein was first named and characterized as an aldehyde by the Swedish chemist Jöns Jacob Berzelius in 1839. He had been working with it as a thermal degradation product of glycerol, a material used in the manufacture of soap. The name is a contraction of 'acrid' (referring to its pungent smell) and 'oleum' (referring to its oil-like consistency). In the 20th century, acrolein became an important intermediate for the industrial production of acrylic acid and acrylic plastics. [4]

Production

Acrolein is prepared industrially by oxidation of propene. The process uses air as the source of oxygen and requires metal oxides as heterogeneous catalysts: [5]

CH3CH=CH2 + O2 → CH2=CHCHO + H2O

About 500,000 tons of acrolein are produced in this way annually in North America, Europe, and Japan. Additionally, all acrylic acid is produced via the transient formation of acrolein.

Propane represents a promising but challenging feedstock for the synthesis of acrolein (and acrylic acid).The main challenge is in fact the overoxidation to this acid.

When glycerol (also called glycerin) is heated to 280 °C, it decomposes into acrolein:

(CH2OH)2CHOH → CH2=CHCHO + 2 H2O

This route is attractive when glycerol is co-generated in the production of biodiesel from vegetable oils or animal fats. The dehydration of glycerol has been demonstrated but has not proven competitive with the route from petrochemicals. [6] [7]

Niche or laboratory methods

The original industrial route to acrolein, developed by Degussa, involves condensation of formaldehyde and acetaldehyde:

HCHO + CH3CHO → CH2=CHCHO + H2O

Acrolein may also be produced on lab scale by the action of potassium bisulfate on glycerol (glycerine). [8]

Reactions

Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde. [5] The monomer 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate is also produced from acrolein via the intermediacy of tetrahydrobenzaldehyde.

Uses

Military uses

Acrolein was used in warfare due to its irritant and blistering properties. The French used the chemical in their hand grenades and artillery shells [9] during World War I under the name "Papite". [10]

Biocide

Acrolein is mainly used as a contact herbicide to control submersed and floating weeds, as well as algae, in irrigation canals. It is used at a level of 10 ppm in irrigation and recirculating waters. In the oil and gas industry, it is used as a biocide in drilling waters, as well as a scavenger for hydrogen sulfide and mercaptans. [5]

Chemical precursor

A number of useful compounds are made from acrolein, exploiting its bifunctionality. The amino acid methionine is produced by addition of methanethiol followed by the Strecker synthesis. Acrolein condenses with acetaldehyde and amines to give methylpyridines. [11] It is also an intermediate in the Skraup synthesis of quinolines.

Acrolein will polymerize in the presence of oxygen and in water at concentrations above 22%. The color and texture of the polymer depends on the conditions. The polymer is a clear, yellow solid. In water, it will form a hard, porous plastic.[ citation needed ]

Acrolein has been used as a fixative in preparation of biological specimens for electron microscopy. [12]

Health risks

Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages. [5] The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a "tolerable oral acrolein intake" of 7.5 μg per day per kg of body weight. Although acrolein occurs in French fries (and other fried foods), the levels are only a few μg per kg. [13] In response to occupational exposures to acrolein, the US Occupational Safety and Health Administration has set a permissible exposure limit at 0.1 ppm (0.25 mg/m3) at an eight-hour time-weighted average. [14] Acrolein acts in an immunosuppressive manner and may promote regulatory cells, [15] thereby preventing the generation of allergies on the one hand, but also increasing the risk of cancer.

Acrolein was identified as one of the chemicals involved in the 2019 Kim Kim River toxic pollution incident. [16]

Cigarette smoke

Connections exist between acrolein gas in the smoke from tobacco cigarettes and the risk of lung cancer. [17] Acrolein is one of seven toxicants in cigarette smoke that are most associated with respiratory tract carcinogenesis. [18] The mechanism of action of acrolein appears to involve induction of increased reactive oxygen species and DNA damage related to oxidative stress. [19]

In terms of the "noncarcinogenic health quotient"[ jargon ] for components in cigarette smoke, acrolein dominates, contributing 40 times more than the next component, hydrogen cyanide. [20] The acrolein content in cigarette smoke depends on the type of cigarette and added glycerin, making up to 220 μg acrolein per cigarette. [21] [22] Importantly, while the concentration of the constituents in mainstream smoke can be reduced by filters, this has no significant effect on the composition of the side-stream smoke where acrolein usually resides, and which is inhaled by passive smoking. [23] [24] E-cigarettes, used normally, only generate "negligible" levels of acrolein (less than 10 μg "per puff"). [25] [26]

Chemotherapy metabolite

Cyclophosphamide and ifosfamide treatment results in the production of acrolein. [27] Acrolein produced during cyclophosphamide treatment collects in the urinary bladder and if untreated can cause hemorrhagic cystitis.

Endogenous production

Acrolein is a component of reuterin. [28] Reuterin can be produced by gut microbes when glycerol is present. Microbe-produced reuterin is a potential resource of acrolein. [29]

Analytical methods

The "acrolein test" is for the presence of glycerin or fats. A sample is heated with potassium bisulfate, and acrolein is released if the test is positive. When a fat is heated strongly in the presence of a dehydrating agent such as potassium bisulfate (KHSO
4
), the glycerol portion of the molecule is dehydrated to form the unsaturated aldehyde, acrolein (CH2=CH–CHO), which has the odor peculiar to burnt cooking grease. More modern methods exist. [13]

In the US, EPA methods 603 and 624.1 are designed to measure acrolein in industrial and municipal wastewater streams. [30] [31]

Related Research Articles

<span class="mw-page-title-main">Nitroglycerin</span> Chemical compound

Nitroglycerin (NG), also known as trinitroglycerin (TNG), nitro, glyceryl trinitrate (GTN), or 1,2,3-trinitroxypropane, is a dense, colorless, oily, explosive liquid most commonly produced by nitrating glycerol with white fuming nitric acid under conditions appropriate to the formation of the nitric acid ester. Chemically, the substance is an organic nitrate compound rather than a nitro compound, but the traditional name is retained. Discovered in 1847 by Ascanio Sobrero, nitroglycerin has been used as an active ingredient in the manufacture of explosives, namely dynamite, and as such it is employed in the construction, demolition, and mining industries. It is combined with nitrocellulose to form double-based smokeless powder, which has been used as a propellant in artillery and firearms since the 1880s.

Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH3CHO, sometimes abbreviated as MeCHO. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.

<span class="mw-page-title-main">Glycerol</span> Chemical compound widely used in food and pharmaceuticals

Glycerol, also called glycerine or glycerin, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known as glycerides. Because it has antimicrobial and antiviral properties, it is widely used in wound and burn treatments approved by the U.S. Food and Drug Administration. Conversely, it is also used as a bacterial culture medium. Its presence in blood can be used as an effective marker to measure liver disease. It is also widely used as a sweetener in the food industry and as a humectant in pharmaceutical formulations. Because of its three hydroxyl groups, glycerol is miscible with water and is hygroscopic in nature.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses.

<span class="mw-page-title-main">Propylene oxide</span> Chemical compound

Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula CH3CHCH2O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture.

<span class="mw-page-title-main">Oleic acid</span> Monounsaturated omega-9 fatty acid

Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. In chemical terms, oleic acid is classified as a monounsaturated omega-9 fatty acid, abbreviated with a lipid number of 18:1 cis-9, and a main product of Δ9-desaturase. It has the formula CH3−(CH2)7−CH=CH−(CH2)7−COOH. The name derives from the Latin word oleum, which means oil. It is the most common fatty acid in nature. The salts and esters of oleic acid are called oleates. It is a common component of oils, and thus occurs in many types of food, as well as in soap.

A humectant is a hygroscopic (water-absorbing) substance used to keep things moist. They are used in many products, including food, cosmetics, medicines and pesticides. When used as a food additive, a humectant has the effect of keeping moisture in the food. Humectants are sometimes used as a component of antistatic coatings for plastics.

<span class="mw-page-title-main">Acrylic acid</span> Chemical compound

Acrylic acid (IUPAC: propenoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has a characteristic acrid or tart smell. It is miscible with water, alcohols, ethers, and chloroform. More than a million tons are produced annually.

In chemistry, a dehydration reaction is a chemical reaction that involves the loss of water from the reacting molecule or ion. Dehydration reactions are common processes, the reverse of a hydration reaction.

<span class="mw-page-title-main">Methyl methacrylate</span> Chemical compound

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

<span class="mw-page-title-main">Isobutanol</span> Chemical compound

Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH3)2CHCH2OH (sometimes represented as i-BuOH). This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters. Its isomers are 1-butanol, 2-butanol, and tert-butanol, all of which are important industrially.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

<span class="mw-page-title-main">Malononitrile</span> Organic compound with formula CH2(CN)2

Malononitrile is an organic compound nitrile with the formula CH2(CN)2. It is a colorless or white solid, although aged samples appear yellow or even brown. It is a widely used building block in organic synthesis.

<span class="mw-page-title-main">Methacrylic acid</span> Chemical compound

Methacrylic acid, abbreviated MAA, is an organic compound with the formula CH2=C(CH3)COOH. This colorless, viscous liquid is a carboxylic acid with an acrid unpleasant odor. It is soluble in warm water and miscible with most organic solvents. Methacrylic acid is produced industrially on a large scale as a precursor to its esters, especially methyl methacrylate (MMA), and to poly(methyl methacrylate) (PMMA).

<span class="mw-page-title-main">Crotonaldehyde</span> Chemical compound

Crotonaldehyde is a chemical compound with the formula CH3CH=CHCHO. The compound is usually sold as a mixture of the E- and Z-isomers, which differ with respect to the relative position of the methyl and formyl groups. The E-isomer is more common (data given in Table is for the E-isomer). This lachrymatory liquid is moderately soluble in water and miscible in organic solvents. As an unsaturated aldehyde, crotonaldehyde is a versatile intermediate in organic synthesis. It occurs in a variety of foodstuffs, e.g. soybean oils.

Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. It liberates hydrogen cyanide easily, so it is used as a source of such. For this reason, this cyanohydrin is also highly toxic.

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

<span class="mw-page-title-main">Reuterin</span> Chemical compound

Reuterin (3-hydroxypropionaldehyde) is the organic compound with the formula HOCH2CH2CHO. It is a bifunctional molecule, containing both a hydroxy and aldehyde functional groups.

<span class="mw-page-title-main">Composition of electronic cigarette aerosol</span>

The chemical composition of the electronic cigarette aerosol varies across and within manufacturers. Limited data exists regarding their chemistry. However, researchers at Johns Hopkins University analyzed the vape clouds of popular brands such as Juul and Vuse, and found "nearly 2,000 chemicals, the vast majority of which are unidentified."

α,β-Unsaturated carbonyl compound Functional group of organic compounds

α,β-Unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ-R. Such compounds include enones and enals, but also carboxylic acids and the corresponding esters and amides. In these compounds, the carbonyl group is conjugated with an alkene. Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β-carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid. Unsaturated carbonyls can be prepared in the laboratory in an aldol reaction and in the Perkin reaction.

References

  1. 1 2 3 4 5 6 7 8 9 NIOSH Pocket Guide to Chemical Hazards. "#0011". National Institute for Occupational Safety and Health (NIOSH).
  2. "Archived copy". Archived from the original on 2015-04-02. Retrieved 2015-03-26.{{cite web}}: CS1 maint: archived copy as title (link)
  3. 1 2 "Acrolein". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. Jan F. Stevens and Claudia S. Maier, "Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease", Mol Nutr Food Res. 2008 Jan; 52(1): 7–25.
  5. 1 2 3 4 Dietrich Arntz; Achim Fischer; Mathias Höpp; et al. (2012). "Acrolein and Methacrolein". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_149.pub2. ISBN   978-3527306732.
  6. Martin, Andreas; Armbruster, Udo; Atia, Hanan (2012). "Recent developments in dehydration of glycerol toward acrolein over heteropolyacids". European Journal of Lipid Science and Technology. 114 (1): 10–23. doi:10.1002/ejlt.201100047.
  7. Abdullah, Anas; Zuhairi Abdullah, Ahmad; Ahmed, Mukhtar; Khan, Junaid; Shahadat, Mohammad; Umar, Khalid; Alim, Md Abdul (March 2022). "A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol" . Journal of Cleaner Production. 341: 130876. doi:10.1016/j.jclepro.2022.130876. S2CID   246853148.
  8. Homer Adkins; W. H. Hartung (1926). "Acrolein". Organic Syntheses . 6: 1. doi:10.15227/orgsyn.006.0001.; Collective Volume, vol. 1, p. 15
  9. Prentiss, Augustin Mitchell; Fisher, George J. B. (1937). Chemicals in War: A Treatise on Chemical Warfare. McGraw-Hill Book Company, Incorporated. p. 139. Retrieved 21 November 2021.
  10. Eisler, Ronald (1994). Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, National Biological Survey. Retrieved 21 November 2021.
  11. Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. ISBN   978-3527306732.
  12. M J Dykstra, L E Reuss (2003). Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. Springer. ISBN   0-306-47749-1.
  13. 1 2 Abraham, Klaus; Andres, Susanne; Palavinskas, Richard; Berg, Katharina; Appel, Klaus E.; Lampen, Alfonso (2011). "Toxicology and risk assessment of acrolein in food". Mol. Nutr. Food Res. 55 (9): 1277–1290. doi:10.1002/mnfr.201100481. PMID   21898908.
  14. CDC - NIOSH Pocket Guide to Chemical Hazards
  15. Roth-Walter, Franziska; Bergmayr, Cornelia; Meitz, Sarah; Buchleitner, Stefan; Stremnitzer, Caroline; Fazekas, Judit; Moskovskich, Anna; Müller, Mario A.; Roth, Georg A.; Manzano-Szalai, Krisztina; Dvorak, Zdenek; Neunkirchner, Alina; Jensen-Jarolim, Erika (2017). "Janus-faced Acrolein prevents allergy, but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: Mouse model for passive respiratory exposure". Scientific Reports. 7: 45067. Bibcode:2017NatSR...745067R. doi:10.1038/srep45067. PMC   5362909 . PMID   28332605.
  16. Tara Thiagarajan (Mar 15, 2019). "8 Chemicals Have Been Identified in Pasir Gudang's Kim Kim River, Here's What They Are". World of Buzz.
  17. Feng, Z; Hu W; Hu Y; Tang M (October 2006). "Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair". Proceedings of the National Academy of Sciences . 103 (42): 15404–15409. Bibcode:2006PNAS..10315404F. doi: 10.1073/pnas.0607031103 . PMC   1592536 . PMID   17030796.
  18. Cunningham FH, Fiebelkorn S, Johnson M, Meredith C. A novel application of the Margin of Exposure approach: segregation of tobacco smoke toxicants. Food Chem Toxicol. 2011 Nov;49(11):2921-33. doi: 10.1016/j.fct.2011.07.019. Epub 2011 Jul 23. PMID   21802474
  19. Li L, Jiang L, Geng C, Cao J, Zhong L. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radic Res. 2008 Apr;42(4):354-61. doi: 10.1080/10715760802008114 PMID   18404534
  20. Haussmann, Hans-Juergen (2012). "Use of Hazard Indices for a Theoretical Evaluation of Cigarette Smoke Composition". Chem. Res. Toxicol. 25 (4): 794–810. doi:10.1021/tx200536w. PMID   22352345.
  21. Daher, N; Saleh, R; Jaroudi, E; Sheheitli, H; Badr, T; Sepetdjian, E; Al Rashidi, M; Saliba, N; Shihadeh, A (Jan 2010). "Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors". Atmos Environ. 44 (1): 8–14. Bibcode:2010AtmEn..44....8D. doi:10.1016/j.atmosenv.2009.10.004. PMC   2801144 . PMID   20161525.
  22. Herrington, JS; Myers, C (2015). "Electronic cigarette solutions and resultant aerosol profiles". J Chromatogr A. 1418: 192–9. doi: 10.1016/j.chroma.2015.09.034 . PMID   26422308.
  23. Blair, SL; Epstein, SA; Nizkorodov, SA; Staimer, N (2015). "A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes". Aerosol Sci Technol. 49 (9): 816–827. Bibcode:2015AerST..49..816B. doi:10.1080/02786826.2015.1076156. PMC   4696598 . PMID   26726281.
  24. Sopori, M (May 2002). "Effects of cigarette smoke on the immune system". Nat. Rev. Immunol. 2 (5): 372–7. doi:10.1038/nri803. PMID   12033743. S2CID   26116099.
  25. McNeill, A, SC (2015). "E - cigarettes: an evidence update A report commissioned by Public Health England" (PDF). www.gov.uk. UK: Public Health England. pp. 76–78. Retrieved 20 August 2015.{{cite web}}: CS1 maint: multiple names: authors list (link)
  26. Sleiman, M (2016). "Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals". Environmental Science and Technology. 50 (17): 9644–9651. Bibcode:2016EnST...50.9644S. doi:10.1021/acs.est.6b01741. PMID   27461870. S2CID   31872198.
  27. Paci, A; Rieutord, A; Guillaume, D; et al. (March 2000). "Quantitative high-performance liquid chromatography chromatographic determination of acrolein in plasma after derivatization with Luminarin 3". Journal of Chromatography B . 739 (2): 239–246. doi:10.1016/S0378-4347(99)00485-5. PMID   10755368.
  28. Engels, Christina; Schwab, Clarissa; Zhang, Jianbo; Stevens, Marc J. A.; Bieri, Corinne; Ebert, Marc-Olivier; McNeill, Kristopher; Sturla, Shana J.; Lacroix, Christophe (2016-11-07). "Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin". Scientific Reports. 6 (1): 36246. Bibcode:2016NatSR...636246E. doi:10.1038/srep36246. ISSN   2045-2322. PMC   5098142 . PMID   27819285.
  29. Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa (2018-03-07). Johnson, Eric A. (ed.). "Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source". mBio. 9 (1): e01947–17. doi:10.1128/mBio.01947-17. ISSN   2161-2129. PMC   5770549 . PMID   29339426.
  30. Appendix A To Part 136 Methods For Organic Chemical Analysis of Municipal and Industrial Wastewater, Method 603—Acrolein And Acrylonitrile>
  31. Method 624.1 — Purgables by GC-MS>