Phenyldichloroarsine

Last updated
Phenyldichloroarsine
Phenyldichloroarsine.svg
Phenyldichloroarsine molecule ball.png
Names
Preferred IUPAC name
Phenylarsonous dichloride
Other names
Dichlorophenylarsane
Dichloro(phenyl)arsine
Identifiers
3D model (JSmol)
AbbreviationsPD (NATO)
ChemSpider
ECHA InfoCard 100.010.721 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-791-9
PubChem CID
RTECS number
  • CH5425000
UNII
  • InChI=1S/C6H5AsCl2/c8-7(9)6-4-2-1-3-5-6/h1-5H Yes check.svgY
    Key: UDHDFEGCOJAVRE-UHFFFAOYSA-N Yes check.svgY
  • Cl[As](Cl)c1ccccc1
Properties
C6H5AsCl2
Molar mass 222.9315 g/mol
AppearanceColorless liquid
Density 1.65 g/cm3 (at 20 °C)
Melting point −20 °C (−4 °F; 253 K)
Boiling point 252 to 255 °C (486 to 491 °F; 525 to 528 K)
Reacts
Solubility acetone, ether, benzene
log P 3.060
Vapor pressure 0.033
3.00E-05 atm·m3/mole
Atmospheric OH rate constant
1.95E-12 cm3/molecule·s
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammability, incapacitation, blistering
NFPA 704 (fire diamond)
4
1
0
Flash point 16 °C (61 °F; 289 K)
Lethal dose or concentration (LD, LC):
2,500 mg·min/m3
NIOSH (US health exposure limits):
PEL (Permissible)
0.5 mg/m2
Safety data sheet (SDS) New Jersey MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenyldichloroarsine, also known by its wartime name phenyl Dick [1] and its NATO abbreviation PD, is an organic arsenical vesicant and vomiting agent developed by Germany and France for use as a chemical warfare agent during World War I. The agent is known by multiple synonyms and is technically classified as a vesicant, or blister agent.

Contents

History

PD was prepared during 1917–18 in Germany and France, during World War II it was prepared in Germany.

Chemical characteristics

General

Phenyldichloroarsine is an odorless, colorless substance that can form hydrochloric acid upon contact with water. [2] The reaction with water is very slow, the substance sinks, and the reaction is considered non-hazardous. [3] Another product of hydrolysis is phenylarsenious acid, which is a severe irritant to the mucous membranes and skin. [2] In an impure state, phenyldichloroarsine may have a slight brown color, in its purest form though there is no color and the substance has an oily texture. [4] An impure solution of PD also emits a characteristically unpleasant horseradish or garlic-like odor, which is detectable at 0.1 ppm. [5]

Phenyldichloroarsine is one of four organic arsenicals, the other three are lewisite (L), methyldichloroarsine (MD), and ethyldichloroarsine (ED). [6] PD is considered an analog of lewisite. [7] At its freezing point, -20 °C, PD becomes a microcrystalline solid mass. [8] The compound has a C-metalloid bond between the phenyl group and the arsenic and two covalent bonds between the arsenic and the chlorine. [9]

Synthesis

Phenyldichloroarsine is produced by reacting benzene with arsenic trichloride. Anhydrous aluminum chloride acts as a catalyst in this reaction. [4]

Uses

Phenyldichloroarsine is an obsolete chemical warfare agent and is classified as a vesicant or a vomiting/incapacitating agent. [10] It was used as a weapon during World War I, where it showed itself as less effective than other vomiting agents. [10] Phenyldichloroarsine is an arsenical vesicant which can be mixed with mustard agents for use in chemical warfare. [11] PD was developed for use in wet environments, because of its tendency to persist in cool and shaded areas. [12] Phenyldichloroarsine can have a persistence lasting anywhere from 2 to 7 days under usual environmental conditions. [4] In open areas, it is more useful as a vomiting agent but in closed-in areas, such as basements, trenches and caves, it is highly effective because of its "extreme" vapor density. [12] Phenyldichloroarsine has also been used by banks and other high-security facilities to defend against security breaches. [4]

Biological effects

PD damages the eyes, lungs, throat and nasal membranes. [12] PD immediately affects the eyes and blindness can result, though it requires high doses. [4] It also induces nausea and vomiting, an inhalation of as little as 5-50 milligrams can induce severe vomiting. [4] Long-term exposure to PD can cause systemic damage by replacing calcium with arsenic, extensive bone marrow damage can also result. [12] Due to PD being easily recognized in the field and a relatively fast rate for decontamination procedures to become effective, the chemical is not as useful as other blister agents. [4] The blistering resultant from PD exposure may also be delayed, for as little as 30 minutes, [7] or as long as 32 hours depending upon the concentration of the dose. [4]

The molecular toxicology of PD is not well understood, [7] but a 1986 U.S. Army-sponsored report did shed some light on that area. The Army report showed that PD penetrated the red blood cell membrane and interacted with something inside the cell. The study also found that hemoglobin was not responsible for "holding" the PD in its bond with the erythrocytes (red blood cells), instead glutathione was found to be a more likely interacting with PD inside the cell . [7] [12]

See also

Related Research Articles

Mustard gas or sulfur mustard is any of several chemical compounds that contain the chemical structure SCH2CH2Cl. In the wider sense, compounds with the substituent SCH2CH2X and NCH2CH2X are known as sulfur mustards and nitrogen mustards (X = Cl, Br), respectively. Such compounds are potent alkylating agents, which can interfere with several biological processes. Also known as mustard agents, this family of compounds are infamous cytotoxic and blister agents. The name mustard gas is technically incorrect: the substances, when dispersed, are often not gases but a fine mist of liquid droplets. Mustard gases form blisters on exposed skin and in the lungs, often resulting in prolonged illness ending in death. The typical mustard gas is the organosulfur compound called bis(2-chloroethyl) sulfide.

<span class="mw-page-title-main">Chemical weapons in World War I</span> The first large-scale use of chemical weapons leading to their banning

The use of toxic chemicals as weapons dates back thousands of years, but the first large scale use of chemical weapons was during World War I. They were primarily used to demoralize, injure, and kill entrenched defenders, against whom the indiscriminate and generally very slow-moving or static nature of gas clouds would be most effective. The types of weapons employed ranged from disabling chemicals, such as tear gas, to lethal agents like phosgene, chlorine, and mustard gas. This chemical warfare was a major component of the first global war and first total war of the 20th century. The killing capacity of gas was limited, with about 90,000 fatalities from a total of 1.3 million casualties caused by gas attacks. Gas was unlike most other weapons of the period because it was possible to develop countermeasures, such as gas masks. In the later stages of the war, as the use of gas increased, its overall effectiveness diminished. The widespread use of these agents of chemical warfare, and wartime advances in the composition of high explosives, gave rise to an occasionally expressed view of World War I as "the chemist's war" and also the era where weapons of mass destruction were created.

<span class="mw-page-title-main">Lewisite</span> Chemical compound

Lewisite (L) (A-243) is an organoarsenic compound. It was once manufactured in the U.S., Japan, Germany and the Soviet Union for use as a chemical weapon, acting as a vesicant and lung irritant. Although the substance is colorless and odorless in its pure form, impure samples of lewisite are a yellow, brown, violet-black, green, or amber oily liquid with a distinctive odor that has been described as similar to geraniums.

<span class="mw-page-title-main">Arsine</span> Chemical compound

Arsine (IUPAC name: arsane) is an inorganic compound with the formula AsH3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in the semiconductor industry and for the synthesis of organoarsenic compounds. The term arsine is commonly used to describe a class of organoarsenic compounds of the formula AsH3−xRx, where R = aryl or alkyl. For example, As(C6H5)3, called triphenylarsine, is referred to as "an arsine".

<span class="mw-page-title-main">Blister agent</span> Chemicals that result in blistering and skin irritation and damaging

A blister agent, is a chemical compound that causes severe skin, eye and mucosal pain and irritation. They are named for their ability to cause severe chemical burns, resulting in painful water blisters on the bodies of those affected. Although the term is often used in connection with large-scale burns caused by chemical spills or chemical warfare agents, some naturally occurring substances such as cantharidin are also blister-producing agents (vesicants). Furanocoumarin, another naturally occurring substance, causes vesicant-like effects indirectly, for example, by increasing skin photosensitivity greatly. Vesicants have medical uses including wart removal but can be dangerous if even small amounts are ingested.

<span class="mw-page-title-main">Chemical burn</span> Medical condition

A chemical burn occurs when living tissue is exposed to a corrosive substance or a cytotoxic agent. Chemical burns follow standard burn classification and may cause extensive tissue damage. The main types of irritant and/or corrosive products are: acids, bases, oxidizers / reducing agents, solvents, and alkylants. Additionally, chemical burns can be caused by biological toxins and by some types of cytotoxic chemical weapons, e.g., vesicants such as mustard gas and Lewisite, or urticants such as phosgene oxime.

Cyanogen chloride is a highly toxic chemical compound with the formula CNCl. This linear, triatomic pseudohalogen is an easily condensed colorless gas. More commonly encountered in the laboratory is the related compound cyanogen bromide, a room-temperature solid that is widely used in biochemical analysis and preparation.

<span class="mw-page-title-main">Chlormethine</span> Chemical compound

Chlormethine, also known as mechlorethamine, mustine, HN2, and embikhin (эмбихин), is a nitrogen mustard sold under the brand name Mustargen among others. It is the prototype of alkylating agents, a group of anticancer chemotherapeutic drugs. It works by binding to DNA, crosslinking two strands and preventing cell duplication. It binds to the N7 nitrogen on the DNA base guanine. As the chemical is a blister agent, its use is strongly restricted within the Chemical Weapons Convention where it is classified as a Schedule 1 substance.

Phosgene oxime, or CX, is an organic compound with the formula Cl2CNOH. It is a potent chemical weapon, specifically a nettle agent. The compound itself is a colorless solid, but impure samples are often yellowish liquids. It has a strong, disagreeable and irritating odor. It is used as a reagent in organic chemistry.

Chemical, biological (CB) — and sometimes radiological — warfare agents were assigned what is termed a military symbol by the U.S. military until the American chemical and biological weapons programs were terminated. Military symbols applied to the CB agent fill, and not to the entire weapon. A chemical or biological weapon designation would be, for example, "Aero-14/B", which could be filled with GB, VX, TGB, or with a biological modification kit – OU, NU, UL, etc. A CB weapon is an integrated device of (1) agent, (2) dissemination means, and (3) delivery system.

<span class="mw-page-title-main">Diphenylchlorarsine</span> Chemical compound

Diphenylchloroarsine (DA) is the organoarsenic compound with the formula (C6H5)2AsCl. It is highly toxic and was once used in chemical warfare. It is also an intermediate in the preparation of other organoarsenic compounds. The molecule consists of a pyramidal As(III) center attached to two phenyl rings and one chloride. It was also known as sneezing oil during World War I by the Allies.

<span class="mw-page-title-main">HN1 (nitrogen mustard)</span> Chemical compound

Bis(2-chloroethyl)ethylamine is the organic compound with the formula C2H5N(CH2CH2Cl)2. Often abbreviated HN1, it is a powerful vesicant and a nitrogen mustard gas used for chemical warfare. HN1 was developed in the 1920s and 1930s to remove warts and later as a military agent. Because of the latter use, it is a Schedule 1 chemical within the Chemical Weapons Convention and therefore use and production is strongly restricted. It has never been used in warfare.

<span class="mw-page-title-main">HN3 (nitrogen mustard)</span> Chemical compound

Tris(2-chloroethyl)amine is the organic compound with the formula N(CH2CH2Cl)3. Often abbreviated HN3 or HN-3, it is a powerful blister agent and a nitrogen mustard used for chemical warfare. HN3 was the last of the nitrogen mustard agents developed. It was designed as a military agent and is the only one of the nitrogen mustards that is still used for military purposes. It is the principal representative of the nitrogen mustards because its vesicant properties are almost equal to those of HD and thus the analogy between the two types of mustard is the strongest. As a vesicant the use and production is strongly restricted within the Chemical Weapons Convention where it is classified as a Schedule 1 substance.

Arsenicals are chemical compounds that contain arsenic. In a military context, the term arsenical refer to toxic arsenic compounds that are used as chemical warfare agents. This include blister agents, blood agents and vomiting agents. Historically, they were used extensively as insecticides, especially lead arsenate.

<span class="mw-page-title-main">Methyldichloroarsine</span> Chemical compound

Methyldichloroarsine, sometimes abbreviated "MD" and also known as methyl Dick, is an organoarsenic compound with the formula CH3AsCl2. This colourless volatile liquid is a highly toxic vesicant that has been used in chemical warfare.

<span class="mw-page-title-main">Lewisite 2</span> Chemical compound

Lewisite 2(L-2) is an organoarsenic chemical weapon with the formula AsCl(CH=CHCl)2. It is similar to lewisite 1 and lewisite 3 and was first synthesized in 1904 by Julius Arthur Nieuwland. It is usually found as a mixture of 2-chlorovinylarsonous dichloride (lewisite 1) as well as bis(2-chloroethenyl) arsinous chloride (lewisite 2) and tris(2-chlorovinyl)arsine (lewisite 3). Pure lewisite 1 is an oily, colorless liquid, however, the impure mixture can appear amber to black with an odor distinct to geraniums.

<span class="mw-page-title-main">Lewisite 3</span> Chemical compound

Lewisite 3(L-3) is an organoarsenic chemical weapon like lewisite 1 and lewisite 2 first synthesized in 1904 by Julius Arthur Nieuwland. It is usually found as a mixture of 2-chlorovinylarsonous dichloride as well as bis(2-chloroethenyl) arsinous chloride and tris(2-chlorovinyl)arsine. Pure lewisite 1 is an oily, colorless liquid, however, the impure mixture can appear amber to black with an odor distinct to geraniums.

O-Mustard (T) is a vesicant chemical weapon, a type of mustard gas, with around 3 times the toxicity of the original sulfur mustard. It was developed in England in the 1930s as a thickener for mustard gas to make it more persistent when used in warm climates. A mixture of 60% sulfur mustard and 40% O-mustard also has a lower freezing point than pure sulfur mustard, and was given the code name HT. O-mustard is a Schedule I substance under the Chemical Weapons Convention.

<span class="mw-page-title-main">Arsenic compounds</span> Chemical compounds containing arsenic

Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table. The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3−
4
ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal owing to the influence of the lone pair of electrons.

References

  1. Wood JR (May 1944). "Chemical Warfare-A Chemical and Toxicological Review". American Journal of Public Health and the Nation's Health. 34 (5): 455–60. doi:10.2105/AJPH.34.5.455. PMC   1625133 . PMID   18015982.
  2. 1 2 Leikin JB, McFee RB (2007). Handbook of Nuclear, Biological, and Chemical Agent Exposures. Informa Health Care. pp. 356–57. ISBN   978-1420044775.)
  3. Pohanish RP (2005). HazMat Data. Wiley-IEEE. pp. 895–96. ISBN   0471726109.)
  4. 1 2 3 4 5 6 7 8 Ledgard J (2006). A Laboratory History of Chemical Warfare Agents. Lulu.com. pp. 127–29. ISBN   1411694325.
  5. Ellison HD (2007). Handbook of Chemical and Biological Warfare Agents. CRC Press. p. 156. ISBN   978-0849314346.
  6. Fitzgerald GM, Vollmer T (19 June 2006). "CBRNE - Vesicants, Organic Arsenicals: L, ED, MD, PD, HL". emedicine. WebMD . Retrieved December 22, 2008.
  7. 1 2 3 4 O'Connor RJ, McGown EL, Dill K (August 1986). "Interaction of Phenyldicholoroarsine with Biological Molecules" (PDF). Department of Chemistry - Clemson University for U.S. Army, Letterman Army Institute of Research. Archived (PDF) from the original on May 22, 2011. Retrieved 22 December 2008.
  8. Hills T (2007). The Illustrated Dictionary of Organic Chemistry. Tokyo: Lotus Press. p. 149. ISBN   978-8189093518.
  9. Manahan SE (1999). Industrial Ecology: Environmental Chemistry and Hazardous Waste. CRC Press. p. 189. ISBN   1566703816.
  10. 1 2 Cashman JR (2008). Emergency Response Handbook for Chemical and Biological Agents and Weapons. CRC Press. pp. 215–19. ISBN   978-1420052657.
  11. Dire DJ (21 December 2007). "CBRNE - Vesicants, Mustard: Hd, Hn1-3, H]". emedicine. WebMD . Retrieved 22 December 2008.
  12. 1 2 3 4 5 Byrnes ME, King DA, Tierno Jr PM (2003). Nuclear, Chemical, and Biological Terrorism: Emergency Response and Public Protection. CRC Press. p. 57. ISBN   1566706513.