4-Hydroxycoumarin

Last updated
4-Hydroxycoumarin
4-Hydroxycoumarin.PNG
Names
Preferred IUPAC name
4-Hydroxy-2H-1-benzopyran-2-one
Other names
4-Coumarinol
Benzotetronic acid
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.012.783 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C9H6O3/c10-7-5-9(11)12-8-4-2-1-3-6(7)8/h1-5,10H Yes check.svgY
    Key: VXIXUWQIVKSKSA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H10O2/c10-7-1-2-8-3-5-9(11)6-4-8/h1-6,10-11H,7H2/b2-1+
    Key: PTNLHDGQWUGONS-OWOJBTEDBL
  • Oc1ccc(/C=C/CO)cc1
Properties
C9H6O3
Molar mass 162.144 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

4-Hydroxycoumarin is a coumarin derivative with a hydroxy group at the 4-position.

Contents

Occurrence

4-Hydroxycoumarin is an important fungal metabolite from the precursor coumarin, and its production leads to further fermentative production of the natural anticoagulant dicoumarol. This happens in the presence of naturally occurring formaldehyde, which allows attachment of a second 4-hydroxycoumarin molecule through the linking carbon of the formaldehyde, to the 3-position of the first 4-hydroxycoumarin molecule, to give the semi-dimer the motif of the drug class. Dicoumarol appears as a fermentation product in spoiled sweet clover silages and is considered a mycotoxin. [1]

4-Hydroxycoumarin is biosynthesized from malonyl-CoA and 2-hydroxybenzoyl-CoA by the enzyme 4-hydroxycoumarin synthase. [2]

Anticoagulants

After the identification of dicoumarol and its anticoagulant activity, it became the prototype for a class of drugs. 4-Hydroxycoumarin forms the core of the chemical structure of anticoagulants known collectively as 4-hydroxycoumarins. They include, for example, warfarin, a pharmaceutical drug used to prevent formation of blood clots, and brodifacoum, a widely used rodenticide.

See also

Related Research Articles

<span class="mw-page-title-main">Anticoagulant</span> Class of drugs

Anticoagulants, commonly known as blood thinners, are chemical substances that prevent or reduce coagulation of blood, prolonging the clotting time. Some of them occur naturally in blood-eating animals such as leeches and mosquitoes, where they help keep the bite area unclotted long enough for the animal to obtain some blood. As a class of medications, anticoagulants are used in therapy for thrombotic disorders. Oral anticoagulants (OACs) are taken by many people in pill or tablet form, and various intravenous anticoagulant dosage forms are used in hospitals. Some anticoagulants are used in medical equipment, such as sample tubes, blood transfusion bags, heart–lung machines, and dialysis equipment. One of the first anticoagulants, warfarin, was initially approved as a rodenticide.

<span class="mw-page-title-main">Warfarin</span> Medication

Warfarin is an anticoagulant used as a medication under several brand names including Coumadin. While the drug is described as a "blood thinner", it does not reduce viscosity but rather inhibits coagulation. Accordingly, it is commonly used to prevent blood clots in the circulatory system such as deep vein thrombosis and pulmonary embolism, and to protect against stroke in people who have atrial fibrillation, valvular heart disease, or artificial heart valves. Less commonly, it is used following ST-segment elevation myocardial infarction and orthopedic surgery. It is usually taken by mouth, but may also be administered intravenously.

<span class="mw-page-title-main">Coumarin</span> Aromatic chemical compound

Coumarin or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.

<i>Dipteryx odorata</i> Species of flowering tree in the pea family

Dipteryx odorata is a species of flowering tree in the pea family, Fabaceae. The tree is native to Northern South America and is semi-deciduous. Its seeds are known as tonka beans. They are black and wrinkled and have a smooth, brown interior. They have a strong fragrance similar to sweet woodruff due to their high content of coumarin.

<span class="mw-page-title-main">CYP2A6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A6 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. CYP2A6 is the primary enzyme responsible for the oxidation of nicotine and cotinine. It is also involved in the metabolism of several pharmaceuticals, carcinogens, and a number of coumarin-type alkaloids. CYP2A6 is the only enzyme in the human body that appreciably catalyzes the 7-hydroxylation of coumarin, such that the formation of the product of this reaction, 7-hydroxycoumarin, is used as a probe for CYP2A6 activity.

<span class="mw-page-title-main">Novobiocin</span> Chemical compound

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the class Actinomycetia. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

Karl Paul Gerhard Link was an American biochemist best known for his discovery of the anticoagulant warfarin.

<span class="mw-page-title-main">Phenprocoumon</span> Drug

Phenprocoumon is a long-acting blood thinner drug to be taken by mouth, and a derivative of coumarin. It acts as a vitamin K antagonist and inhibits blood clotting (coagulation) by blocking synthesis of coagulation factors II, VII, IX and X. It is used for the prophylaxis and treatment of thromboembolic disorders such as heart attacks and pulmonary (lung) embolism. The most common adverse effect is bleeding. The drug interacts with a large number of other medications, including aspirin and St John's Wort. It is the standard coumarin used in Germany, Austria, and other European countries.

Lepirudin is an anticoagulant that functions as a direct thrombin inhibitor.

<span class="mw-page-title-main">Acenocoumarol</span> Anticoagulant

Acenocoumarol is an anticoagulant that functions as a vitamin K antagonist. It is a derivative of coumarin and is generic, so is marketed under many brand names worldwide.

<span class="mw-page-title-main">Dicoumarol</span> Chemical compound

Dicoumarol (INN) or dicumarol (USAN) is a naturally occurring anticoagulant drug that depletes stores of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases.

<span class="mw-page-title-main">4-Hydroxycoumarins</span>

4-Hydroxycoumarins are a class of vitamin K antagonist (VKA) anticoagulant drug molecules derived from coumarin by adding a hydroxy group at the 4 position to obtain 4-hydroxycoumarin, then adding a large aromatic substituent at the 3-position. The large 3-position substituent is required for anticoagulant activity.

<span class="mw-page-title-main">Brodifacoum</span> Chemical compound

Brodifacoum is a highly lethal 4-hydroxycoumarin vitamin K antagonist anticoagulant poison. In recent years, it has become one of the world's most widely used pesticides. It is typically used as a rodenticide, but is also used to control larger pests such as possums.

<span class="mw-page-title-main">Mofebutazone</span> Chemical compound

Mofebutazone is a drug used for joint and muscular pain. It is a 3,5-pyrazolinedione derivative.

<span class="mw-page-title-main">Bromadiolone</span> Chemical compound

Bromadiolone is a potent anticoagulant rodenticide. It is a second-generation 4-hydroxycoumarin derivative and vitamin K antagonist, often called a "super-warfarin" for its added potency and tendency to accumulate in the liver of the poisoned organism. When first introduced to the UK market in 1980, it was effective against rodent populations that had become resistant to first generation anticoagulants.

<span class="mw-page-title-main">Vitamin K antagonist</span>

Vitamin K antagonists (VKA) are a group of substances that reduce blood clotting by reducing the action of vitamin K. The term "vitamin K antagonist" is technically a misnomer, as the drugs do not directly antagonize the action of vitamin K in the pharmacological sense, but rather the recycling of vitamin K. Vitamin K antagonists (VKAs) have been the mainstay of anticoagulation therapy for more than 50 years.

<span class="mw-page-title-main">Daphnin</span> Chemical compound

Daphnin is a plant toxin with the chemical formula C15H16O9 and is one of the active compounds present in the Eurasian and North African genus Daphne of the Thymelaeaceae, a plant family with a predominantly Southern Hemisphere distribution with concentrations in Australia and tropical Africa.

Four drugs from the class of direct Xa inhibitors are marketed worldwide. Rivaroxaban (Xarelto) was the first approved FXa inhibitor to become commercially available in Europe and Canada in 2008. The second one was apixaban (Eliquis), approved in Europe in 2011 and in the United States in 2012. The third one edoxaban was approved in Japan in 2011 and in Europe and the US in 2015. Betrixaban (Bevyxxa) was approved in the US in 2017.

<span class="mw-page-title-main">Pacific Blue (dye)</span> Chemical compound

Pacific Blue, or systematically 3-carboxy-6,8-difluoro-7-hydroxycoumarin, is a fluorophore used in cell biology. Its excitation maximum lies at 401 nm, while its emission maximum is at 452 nm. In contrast to the less acidic 7-hydroxy-3-carboxycoumarin (pKa=7.0), the high acidity of the phenol of Pacific Blue (pKa=3.7) causes its fluorescence to remain very high at neutral pH.

<span class="mw-page-title-main">Coumarin derivatives</span>

Coumarin derivatives are derivatives of coumarin and are considered phenylpropanoids. Among the most important derivatives are the 4-hydroxycoumarins, which exhibit anticoagulant properties, a characteristic not present for coumarin itself.

References

  1. Bye, A.; King, H. K. (1970). "The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius". Biochemical Journal. 117 (2): 237–245. doi:10.1042/bj1170237. PMC   1178855 . PMID   4192639.
  2. Liu, B.; Raeth, T.; Beuerle, T. & Beerhues, L. (2010). "A novel 4-hydroxycoumarin biosynthetic pathway". Plant Mol. Biol. 72 (1–2): 17–25. doi:10.1007/s11103-009-9548-0. PMID   19757094. S2CID   24313989.