Ethyl bromoacetate

Last updated
Ethyl bromoacetate
Ethyl-bromoacetate-2D-skeletal.png
Ethyl-bromoacetate-3D-balls.png
Names
Preferred IUPAC name
Ethyl bromoacetate
Other names
  • Antol
  • Bromoacetic acid, ethyl ester
  • Ethoxycarbonylmethyl bromide
  • Ethyl 2-bromoacetate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.002.992 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-290-9
PubChem CID
RTECS number
  • AF6000000
UNII
UN number 1603
  • InChI=1S/C4H7BrO2/c1-2-7-4(6)3-5/h2-3H2,1H3 Yes check.svgY
    Key: PQJJJMRNHATNKG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H7BrO2/c1-2-7-4(6)3-5/h2-3H2,1H3
    Key: PQJJJMRNHATNKG-UHFFFAOYAE
  • BrCC(=O)OCC
Properties
BrCH2CO2CH2CH3
Molar mass 167.002 g·mol−1
AppearanceColorless to yellow liquid [1]
Odor Fruity, pungent [2]
Density 1.51 g/cm3
Melting point −38 °C (−36 °F; 235 K) [1]
Boiling point 158 °C (316 °F; 431 K) [1]
Insoluble
−82.8·10−6 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-skull.svg
Danger
H300, H310, H330
P260, P262, P264, P270, P271, P280, P284, P301+P310, P302+P350, P304+P340, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
4
0
3
Flash point 47 °C (117 °F; 320 K) [1]
Related compounds
Related esters
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ethyl bromoacetate is the chemical compound with the formula Br C H 2CO 2CH2CH3. It is the ethyl ester of bromoacetic acid and is prepared in two steps from acetic acid. [3] It is a lachrymator and has a fruity, pungent odor. [2] It is also a highly toxic alkylating agent and may be fatal if inhaled.

Contents

Applications

Ethyl bromoacetate is listed by the World Health Organization as a riot control agent, and was first employed for that purpose by French police in 1912. [4] The French army used rifle grenades 'grenades lacrymogènes' [5] filled with this gas against the Germans beginning in August 1914, but the weapons were largely ineffective, even though ethyl bromoacetate is twice as toxic as chlorine. [6] [lower-alpha 1] In the early months of the war the British also used the weaponized use of tear gas agents and more toxic gasses including sulfur dioxide. [7] The German army then used these attacks to justify their subsequent employment of it as odorant or warning agent in odorless, toxic gases and chemical weapons in 1915 under the German code Weisskreuz (White Cross). [8]

In organic synthesis, it is a versatile alkylating agent. Its major application involves the Reformatsky reaction, wherein it reacts with zinc to form a zinc enolate. The resulting BrZnCH2CO2CH2CH3 condenses with carbonyl compounds to give a β-hydroxy-esters.

It is also the starting point for the preparation of several other reagents. For example, the related Wittig reagent (prepared by reaction with triphenylphosphine) is commonly used to prepare alpha,beta-unsaturated esters from carbonyl compounds such as benzaldehyde: [9]

Ethyl bromoacetate as the starting point for a Wittig reaction sequence EsterStabilisedWittigScheme.png
Ethyl bromoacetate as the starting point for a Wittig reaction sequence

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Phosgene</span> Toxic gaseous compound (COCl2)

Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

<span class="mw-page-title-main">Fischer–Speier esterification</span> Type of chemical reaction

Fischer esterification or Fischer–Speier esterification is a special type of esterification by refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer and Arthur Speier in 1895. Most carboxylic acids are suitable for the reaction, but the alcohol should generally be primary or secondary. Tertiary alcohols are prone to elimination. Contrary to common misconception found in organic chemistry textbooks, phenols can also be esterified to give good to near quantitative yield of products. Commonly used catalysts for a Fischer esterification include sulfuric acid, p-toluenesulfonic acid, and Lewis acids such as scandium(III) triflate. For more valuable or sensitive substrates other, milder procedures such as Steglich esterification are used. The reaction is often carried out without a solvent or in a non-polar solvent to facilitate the Dean-Stark method. Typical reaction times vary from 1–10 hours at temperatures of 60-110 °C.

<span class="mw-page-title-main">Diazomethane</span> Simplest diazo compound and methylating agent

Diazomethane is an organic chemical compound with the formula CH2N2, discovered by German chemist Hans von Pechmann in 1894. It is the simplest diazo compound. In the pure form at room temperature, it is an extremely sensitive explosive yellow gas; thus, it is almost universally used as a solution in diethyl ether. The compound is a popular methylating agent in the laboratory, but it is too hazardous to be employed on an industrial scale without special precautions. Use of diazomethane has been significantly reduced by the introduction of the safer and equivalent reagent trimethylsilyldiazomethane.

<span class="mw-page-title-main">Propyne</span> Hydrocarbon compound (HC≡C–CH3)

Propyne (methylacetylene) is an alkyne with the chemical formula CH3C≡CH. It is a component of MAPD gas—along with its isomer propadiene (allene), which was commonly used in gas welding. Unlike acetylene, propyne can be safely condensed.

Xylyl-bromide, also known as methylbenzyl bromide or T-stoff ('substance-T'), is any member or a mixture of organic chemical compounds with the molecular formula C6H4(CH3)(CH2Br). The mixture was formerly used as a tear gas and has an odor reminiscent of lilac. All members and the mixture are colourless liquids, although commercial or older samples appear yellowish.

<span class="mw-page-title-main">Dimethyl sulfate</span> Chemical compound

Dimethyl sulfate (DMS) is a chemical compound with formula (CH3O)2SO2. As the diester of methanol and sulfuric acid, its formula is often written as (CH3)2SO4 or Me2SO4, where CH3 or Me is methyl. Me2SO4 is mainly used as a methylating agent in organic synthesis.

Bromoethane, also known as ethyl bromide, is a chemical compound of the haloalkanes group. It is abbreviated by chemists as EtBr. This volatile compound has an ether-like odor.

<span class="mw-page-title-main">Carbonyldiimidazole</span> Chemical compound

1,1'-Carbonyldiimidazole (CDI) is an organic compound with the molecular formula (C3H3N2)2CO. It is a white crystalline solid. It is often used for the coupling of amino acids for peptide synthesis and as a reagent in organic synthesis.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

Benzyl chloride, or α-chlorotoluene, is an organic compound with the formula C6H5CH2Cl. This colorless liquid is a reactive organochlorine compound that is a widely used chemical building block.

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

<span class="mw-page-title-main">Petasis reagent</span> Chemical compound

The Petasis reagent, named after Nicos A. Petasis, is an organotitanium compound with the formula Cp2Ti(CH3)2. It is an orange-colored solid.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Stork enamine alkylation</span> Reaction sequence in organic chemistry

The Stork enamine alkylation involves the addition of an enamine to a Michael acceptor or another electrophilic alkylation reagent to give an alkylated iminium product, which is hydrolyzed by dilute aqueous acid to give the alkylated ketone or aldehyde. Since enamines are generally produced from ketones or aldehydes, this overall process constitutes a selective monoalkylation of a ketone or aldehyde, a process that may be difficult to achieve directly.

Bromoacetic acid is the chemical compound with the formula BrCH2CO2H. This colorless solid is a relatively strong alkylating agent. Bromoacetic acid and its esters are widely used building blocks in organic synthesis, for example, in pharmaceutical chemistry.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

<span class="mw-page-title-main">Ethyl bromodifluoroacetate</span> Chemical compound

Ethyl bromodifluoroacetate is an ester with the chemical formula F2BrCH−CO2CH2CH3. It can be used to introduce the CF2 group when synthesising chemical compounds. It is a clear to yellow liquid. It is an ester of bromodifluoroacetic acid and ethyl alcohol.

References

  1. 1 2 3 4 Chemicalland properties database (dead link 13 September 2018)
  2. 1 2 Criswell, DW; McClure, FL; Schaefer, R; Brower, KR (1980). "War gases as olfactory probes". Science. 210 (4468): 425–6. Bibcode:1980Sci...210..425C. doi:10.1126/science.6968976. PMID   6968976.
  3. Natelson, S.; Gottfried, S. (1955). "Ethyl Bromoacetate". Organic Syntheses ; Collected Volumes, vol. 3, p. 381.
  4. Public health response to biological and chemical weapons, Chapter 3, Biological and Chemical agents, WHO Guidance]
  5. "Plaidoyer pour la guerre des gaz". 15 April 2005.
  6. "Plaidoyer pour la guerre des gaz". 15 April 2005.
  7. "Poison Gas and World War One".
  8. Heller, Charles E. (September 1984). "Chemical Warfare in World War I: The American Experience, 1917-1918". Combat Studies Institute. Archived from the original on 2007-07-04. Retrieved 2007-08-02.
  9. A student lab procedure for the Wittig sequence shown, only using the related methyl ester.

Footnotes

  1. The small quantities of gas delivered, roughly 19 cm3 per cartridge, were not even detected by the Germans. The stocks were rapidly consumed.[Why bromoacetate failed in WW1]

Organic Chemistry