Names | |||
---|---|---|---|
Preferred IUPAC name Carbononitridic chloride | |||
Systematic IUPAC name Chloroformonitrile | |||
Other names
| |||
Identifiers | |||
3D model (JSmol) | |||
Abbreviations | CK | ||
ChemSpider | |||
ECHA InfoCard | 100.007.321 | ||
EC Number |
| ||
MeSH | cyanogen+chloride | ||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1589 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties [1] | |||
CNCl | |||
Molar mass | 61.470 g mol−1 | ||
Appearance | Colorless gas | ||
Odor | acrid | ||
Density | 2.7683 mg mL−1 (at 0 °C, 101.325 kPa) | ||
Melting point | −6.55 °C (20.21 °F; 266.60 K) | ||
Boiling point | 13 °C (55 °F; 286 K) | ||
soluble | |||
Solubility | soluble in ethanol, ether | ||
Vapor pressure | 1.987 MPa (at 21.1 °C) | ||
-32.4·10−6 cm3/mol | |||
Thermochemistry | |||
Std molar entropy (S⦵298) | 236.33 J K−1 mol−1 | ||
Std enthalpy of formation (ΔfH⦵298) | 137.95 kJ mol−1 | ||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards | Highly toxic; [2] forms cyanide in the body [3] | ||
GHS labelling: | |||
Danger | |||
NFPA 704 (fire diamond) | |||
Flash point | nonflammable [3] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | none [3] | ||
REL (Recommended) | C 0.3 ppm (0.6 mg/m3) [3] | ||
IDLH (Immediate danger) | N.D. [3] | ||
Safety data sheet (SDS) | inchem.org | ||
Related compounds | |||
Related alkanenitriles | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Cyanogen chloride is a highly toxic chemical compound with the formula CNCl. This linear, triatomic pseudohalogen is an easily condensed colorless gas. More commonly encountered in the laboratory is the related compound cyanogen bromide, a room-temperature solid that is widely used in biochemical analysis and preparation.
Cyanogen chloride is a molecule with the connectivity Cl−C≡N. Carbon and chlorine are linked by a single bond, and carbon and nitrogen by a triple bond. It is a linear molecule, as are the related cyanogen halides (NCF, NCBr, NCI). Cyanogen chloride is produced by the oxidation of sodium cyanide with chlorine. This reaction proceeds via the intermediate cyanogen ((CN)2). [4]
The compound trimerizes in the presence of acid to the heterocycle called cyanuric chloride.
Cyanogen chloride is slowly hydrolyzed by water at neutral pH to release cyanate and chloride ions:
Cyanogen chloride is a precursor to the sulfonyl cyanides [5] and chlorosulfonyl isocyanate, a useful reagent in organic synthesis. [6]
Further chlorination gives the isocyanide dichloride.
Also known as CK, cyanogen chloride is a highly toxic blood agent, and was once proposed for use in chemical warfare. It causes immediate injury upon contact with the eyes or respiratory organs. Symptoms of exposure may include drowsiness, rhinorrhea (runny nose), sore throat, coughing, confusion, nausea, vomiting, edema, loss of consciousness, convulsions, paralysis, and death. [2] It is especially dangerous because it is capable of penetrating the filters in gas masks, according to United States analysts. CK is unstable due to polymerization, sometimes with explosive violence. [7]
Cyanogen chloride is listed in schedule 3 of the Chemical Weapons Convention: all production must be reported to the OPCW. [8]
By 1945, the U.S. Army's Chemical Warfare Service developed chemical warfare rockets intended for the new M9 and M9A1 Bazookas. An M26 Gas Rocket was adapted to fire cyanogen chloride-filled warheads for these rocket launchers. [9] As it was capable of penetrating the protective filter barriers in some gas masks, [10] it was seen as an effective agent against Japanese forces (particularly those hiding in caves or bunkers) because their standard issue gas masks lacked the barriers that would provide protection against cyanogen chloride. [9] [11] [12] The US added the weapon to its arsenal, and considered using it, along with hydrogen cyanide, as part of Operation Downfall, the planned invasion of Japan, but President Harry Truman decided against it, instead using the atomic bombs developed by the secret Manhattan Project. [13] The CK rocket was never deployed or issued to combat personnel. [9]
Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.
Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.
Sodium cyanide is a poisonous compound with the formula NaCN. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base.
Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.
Phenacyl chloride, also commonly known as chloroacetophenone, is a substituted acetophenone. It is a useful building block in organic chemistry. Apart from that, it has been historically used as a riot control agent, where it is designated CN. It should not be confused with cyanide, another agent used in chemical warfare, which has the chemical structure CN−. Chloroacetophenone is thermally stable, and is the only tear agent that is distillable at ambient conditions.
Diphosgene is an organic chemical compound with the formula ClCO2CCl3. This colorless liquid is a valuable reagent in the synthesis of organic compounds. Diphosgene is related to phosgene and has comparable toxicity, but is more conveniently handled because it is a liquid, whereas phosgene is a gas.
Cyanogen is the chemical compound with the formula (CN)2. The simplest stable carbon nitride, it is a colorless and highly toxic gas with a pungent odor. The molecule is a pseudohalogen. Cyanogen molecules consist of two CN groups ‒ analogous to diatomic halogen molecules, such as Cl2, but far less oxidizing. The two cyano groups are bonded together at their carbon atoms: N≡C‒C≡N, though other isomers have been detected. The name is also used for the CN radical, and hence is used for compounds such as cyanogen bromide (NCBr) (but see also Cyano radical). When burned at increased pressure with oxygen, it is possible to get a blue tinted flame, the temperature of which is about 4800°C (a higher temperature is possible with ozone). It is as such regarded as the gas with the second highest temperature of burning (after dicyanoacetylene).
Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms Ps–Ps or Ps–X, such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.
Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.
The cyanate ion is an anion with the chemical formula OCN−. It is a resonance of three forms: [O−−C≡N] (61%) ↔ [O=C=N−] (30%) ↔ [O+≡C−N2−] (4%).
Benzyl chloride, or α-chlorotoluene, is an organic compound with the formula C6H5CH2Cl. This colorless liquid is a reactive organochlorine compound that is a widely used chemical building block.
Chromyl chloride is an inorganic compound with the formula CrO2Cl2. It is a reddish brown compound that is a volatile liquid at room temperature, which is unusual for transition metal compounds. It is the dichloride of chromic acid.
The Gattermann reaction (also known as the Gattermann formylation and the Gattermann salicylaldehyde synthesis) is a chemical reaction in which aromatic compounds are formylated by a mixture of hydrogen cyanide (HCN) and hydrogen chloride (HCl) in the presence of a Lewis acid catalyst such as aluminium chloride (AlCl3). It is named for the German chemist Ludwig Gattermann and is similar to the Friedel–Crafts reaction.
Sulfur tetrafluoride is a chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous hydrogen fluoride gas upon exposure to water or moisture. Sulfur tetrafluoride is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.
Disulfur dichloride is the inorganic compound of sulfur and chlorine with the formula S2Cl2. It is an amber oily liquid.
Chlorosulfonyl isocyanate is the chemical compound ClSO2NCO, known as CSI. This compound is a versatile reagent in organic synthesis.
A cyanogen halide is a molecule consisting of cyanide and a halogen. Cyanogen halides are chemically classified as pseudohalogens.
In chemistry, ureas are a class of organic compounds with the formula (R2N)2CO where R = H, alkyl, aryl, etc. Thus, in addition to describing the specific chemical compound urea ((H2N)2CO), urea is the name of a functional group that is found in many compounds and materials of both practical and theoretical interest. Generally ureas are colorless crystalline solids, which, owing to the presence of fewer hydrogen bonds, exhibit melting points lower than that of urea itself.