Gas mask

Last updated
A typical industrial-grade gas mask for hazardous chemicals and dust BIOT-2019 Polnaia maska s fil'trami ot gazov.jpg
A typical industrial-grade gas mask for hazardous chemicals and dust
A World War I British P Helmet c. 1915 A World War I British gas hood c.1915.jpg
A World War I British P Helmet c.1915
Zelinsky-Kummant protivogaz, designed in 1915, was one of the first modern-type full-head protection gas masks with a detachable filter and eyelet glasses, shown here worn by U.S. Army soldier (USAWC photo) Man wearing a Zelinsky-Kummant gas mask.jpg
Zelinsky–Kummant protivogaz, designed in 1915, was one of the first modern-type full-head protection gas masks with a detachable filter and eyelet glasses, shown here worn by U.S. Army soldier (USAWC photo)
Indian muleteers and mule wearing gas masks, France, February 21, 1940 The British Army in France 1940 F2676.jpg
Indian muleteers and mule wearing gas masks, France, February 21, 1940
A Polish SzM-41M KF gas mask, used from the 1950s through to the 1980s Gas mask MUA IMGP0157.jpg
A Polish SzM-41M KF gas mask, used from the 1950s through to the 1980s

A gas mask is an item of personal protective equipment used to protect the wearer from inhaling airborne pollutants and toxic gases. The mask forms a sealed cover over the nose and mouth, but may also cover the eyes and other vulnerable soft tissues of the face. Most gas masks are also respirators, though the word gas mask is often used to refer to military equipment (such as a field protective mask), the scope used in this article. The gas mask only protects the user from digesting,[ citation needed ][ clarification needed ] inhaling, and contact through the eyes (many agents affect through eye contact). Most combined gas mask filters will last around 8 hours in a biological or chemical situation. Filters against specific chemical agents can last up to 20 hours.

Contents

Airborne toxic materials may be gaseous (for example, chlorine or mustard gas), or particulates (such as biological agents). Many filters provide protection from both types.

The first gas masks mostly used circular lenses made of glass, mica or cellulose acetate to allow vision. Glass and mica were quite brittle and needed frequent replacement. The later Triplex lens style (a cellulose acetate lens sandwiched between glass ones) [1] became more popular, and alongside plain cellulose acetate they became the standard into the 1930s. Panoramic lenses were not popular until the 1930s, but there are some examples of those being used even during the war[ clarification needed ] (Austro-Hungarian 15M). Later, stronger polycarbonate came into use.

Some masks have one or two compact air filter containers screwed onto inlets, while others have a large air filtration container connected to the gas mask via a hose that is sometimes confused with an air-supplied respirator in which an alternate supply of fresh air (oxygen tanks) is delivered.

History and development

Early breathing devices

According to Popular Mechanics , "The common sponge was used in ancient Greece as a gas mask..." [2]

The book of Ingenious Devices published in 850 by the Banū Mūsā brothers describes a gas mask which allowed the wearer to breathe safely in a toxic environment. [3]

In 1785, Jean-François Pilâtre de Rozier invented a respirator.

Primitive respirator examples were used by miners and introduced by Alexander von Humboldt in 1799, when he worked as a mining engineer in Prussia. [4] The forerunner to the modern gas mask was invented in 1847 by Lewis P. Haslett, a device that contained elements that allowed breathing through a nose and mouthpiece, inhalation of air through a bulb-shaped filter, and a vent to exhale air back into the atmosphere. [5] First Facts states that a "gas mask resembling the modern type" was patented by Lewis Phectic Haslett of Louisville, Kentucky, who received a patent on June 12, 1849. [6] U.S. patent #6,529 [7] issued to Haslett, described the first "Inhaler or Lung Protector" that filtered dust from the air.

Early versions were constructed by the Scottish chemist John Stenhouse in 1854 [8] and the physicist John Tyndall in the 1870s. [9] Another early design was the "Safety Hood and Smoke Protector" invented by Garrett Morgan in 1912, and patented in 1914. It was a simple device consisting of a cotton hood with two hoses which hung down to the floor, allowing the wearer to breathe the safer air found there. In addition, moist sponges were inserted at the end of the hoses in order to better filter the air. [10] [11]

First World War

German soldiers with gas masks, 1916 Bundesarchiv Bild 183-R52907, Mannschaft mit Gasmasken am Fla-MG.jpg
German soldiers with gas masks, 1916

The First World War brought about the first need for mass-produced gas masks on both sides because of extensive use of chemical weapons. The German army successfully used poison gas for the first time against Allied troops at the Second Battle of Ypres, Belgium on April 22, 1915. [12] An immediate response was cotton wool wrapped in muslin, issued to the troops by May 1. This was followed by the Black Veil Respirator, invented by John Scott Haldane, which was a cotton pad soaked in an absorbent solution which was secured over the mouth using black cotton veiling. [13]

Seeking to improve on the Black Veil respirator, Cluny MacPherson created a mask made of chemical-absorbing fabric which fitted over the entire head. [14] A 50.5 cm × 48 cm (19.9 in × 18.9 in) canvas hood treated with chlorine-absorbing chemicals, and fitted with a transparent mica eyepiece. [15] Macpherson presented his idea to the British War Office Anti-Gas Department on May 10, 1915; prototypes were developed soon after. [16] The design was adopted by the British Army and introduced as the British Smoke Hood in June 1915; Macpherson was appointed to the War Office Committee for Protection against Poisonous Gases. [17] More elaborate sorbent compounds were added later to further iterations of his helmet (PH helmet), to defeat other respiratory poison gases used such as phosgene, diphosgene and chloropicrin. In summer and autumn 1915, Edward Harrison, Bertram Lambert and John Sadd developed the Large Box Respirator. [18] This canister gas mask had a tin can containing the absorbent materials by a hose and began to be issued in February 1916. A compact version, the Small Box Respirator, was made a universal issue from August 1916.

In the first gas masks of World War I, it was initially found that wood charcoal was a good absorbent of poison gases. Around 1918, it was found that charcoals made from the shells and seeds of various fruits and nuts such as coconuts, chestnuts, horse-chestnuts, and peach stones performed much better than wood charcoal. These waste materials were collected from the public in recycling programs to assist the war effort. [19]

The first effective filtering activated charcoal gas mask in the world was invented in 1915 by Russian chemist Nikolay Zelinsky. [20]

Gas mask for horses BunkArt-Horse-Gas-Mask.jpg
Gas mask for horses
1916, Russian soldiers Soldaty 267 Duhovshinskogo polka.jpg
1916, Russian soldiers

Also in World War I, since dogs were frequently used on the front lines, a special type of gas mask was developed that dogs were trained to wear. [21] Other gas masks were developed during World War I and the time following for horses in the various mounted units that operated near the front lines. [22] In America, thousands of gas masks were produced for American as well as Allied troops. Mine Safety Appliances was a chief producer. This mask was later used widely in industry. [23]

Second World War

A British couple wearing gas masks in their home in 1941 Air Raid Precautions on the British Home Front- Anti-gas Instruction, c 1941 D3948.jpg
A British couple wearing gas masks in their home in 1941

The British Respirator, Anti-Gas (Light) was developed in 1943 by the British. [24] It was made of plastic and rubber-like material that greatly reduced the weight and bulk compared to World War I gas masks, and fitted the user's face more snugly and comfortably. The main improvement was replacing the separate filter canister connected with a hose by an easily replaceable filter canister screwed on the side of the gas mask. Also, it had replaceable plastic lenses.[ citation needed ]

Modern mask

Gas mask development since has mirrored the development of chemical agents in warfare, filling the need to protect against ever more deadly threats, biological weapons, and radioactive dust in the nuclear era. However, for agents that cause harm through contact or penetration of the skin, such as blister agent or nerve agent, a gas mask alone is not sufficient protection, and full protective clothing must be worn in addition to protect from contact with the atmosphere. For reasons of civil defence and personal protection, individuals often buy gas masks since they believe that they protect against the harmful effects of an attack with nuclear, biological, or chemical (NBC) agents, which is only partially true, as gas masks protect only against respiratory absorption. Most military gas masks are designed to be capable of protecting against all NBC agents, but they can have filter canisters proof against those agents (heavier) or only against riot control agents and smoke (lighter and often used for training purposes). There are lightweight masks solely for protection against riot-control agents and not for NBC situations.[ citation needed ]

Although thorough training and the availability of gas masks and other protective equipment can nullify the casualty-causing effects of an attack by chemical agents, troops who are forced to operate in full protective gear are less efficient in completing tasks, tire easily, and may be affected psychologically by the threat of attack by those weapons. During the Cold War, it was seen as inevitable that there would be a constant NBC threat on the battlefield and so troops needed protection in which they could remain fully functional; thus, protective gear and especially gas masks have evolved to incorporate innovations in terms of increasing user comfort and compatibility with other equipment (from drinking devices to artificial respiration tubes, to communications systems etc.).

Iranian soldier wearing a US M17 protective mask on the frontline of the Iran-Iraq War Chemical weapon1.jpg
Iranian soldier wearing a US M17 protective mask on the frontline of the Iran–Iraq War

During the Iran–Iraq War (1980–88), Iraq developed its chemical weapons program with the help of European countries such as Germany and France [25] and used them in a large scale against Iranians and Iraqi Kurds. Iran was unprepared for chemical warfare. In 1984, Iran received gas masks from the Republic of Korea and East Germany, but the Korean masks were not suited for the faces of non-East Asian people, the filter lasted for only 15 minutes, and the 5,000 masks bought from East Germany proved to be not gas masks but spray-painting goggles. As late as 1986, Iranian diplomats still travelled in Europe to buy active charcoal and models of filters to produce defensive gear domestically. In April 1988, Iran started domestic production of gas masks by the Iran Yasa factories. [26]

Pioneers in gas masks. USSR, 1937 Viktor Billa Oborona pionerov.jpg
Pioneers in gas masks. USSR, 1937

Principles of construction

Absorption is the process of being drawn into a (usually larger) body or substrate, and adsorption is the process of deposition upon a surface. This can be used to remove both particulate and gaseous hazards. Although some form of reaction may take place, it is not necessary; the method may work by attractive charges. For example, if the target particles are positively charged, a negatively charged substrate may be used. Examples of substrates include activated carbon, and zeolites. This effect can be very simple and highly effective, for example using a damp cloth to cover the mouth and nose while escaping a fire. While this method can be effective at trapping particulates produced by combustion, it does not filter out harmful gases which may be toxic or which displace the oxygen required for survival.

Safety of old gas masks

Gas masks have a useful lifespan limited by the absorbent capacity of the filter. Filters cease to provide protection when saturated with hazardous chemicals, and degrade over time even if sealed. Most gas masks have sealing caps over the air intake and are stored in vacuum-sealed bags to prevent the filter from degrading due to exposure to humidity and pollutants in normal air. Unused gas mask filters from World War II may not protect the wearer at all, and could be harmful if worn due to long-term changes in the chemical composition of the filter.[ citation needed ]

An asbestos-containing Russian GP-5 filter and a safe modern one in comparison. 2 Gasmaskenfilter.jpg
An asbestos-containing Russian GP-5 filter and a safe modern one in comparison.

Some World War II and Soviet Cold War gas masks contained chrysotile asbestos or crocidolite asbestos in their filters, [27] [28] [29] not known to be harmful at the time. It is not reliably known for how long the materials were used in filters.

Typically, masks using 40 mm connections are a more recent design. Rubber degrades with time, so boxed unused "modern type" masks can be cracked and leak. The US C2 canister (black) contains hexavalent chromium; studies by the U.S. Army Chemical Corps found that the level in the filter was acceptable, but suggest caution when using, as it is a carcinogen. [30]

Modern filter classification

The filter is selected according to the toxic compound. [31] Each filter type protects against a particular hazard and is color-coded:

Filter types
EU Class, colorUS color [32] Hazard
AX, brownblackLow-boiling (≤65 °C) organic compounds
A, brownHigh-boiling (>65 °C) organic compounds
B, grey(many)Inorganic gases (hydrogen sulfide, chlorine, hydrogen cyanide)
E, yellowwhiteAcidic gases (Sulfur dioxide and hydrogen chloride)
K, greengreen Ammonia and amines
CO, blackblue Carbon monoxide
Hg, red Mercury vapor
Reactor, orangemagentaRadioactive (iodine and methyl iodide)
P, whitepurple, orange, or tealparticles

Particle filters are often included, because in many cases the hazardous materials are in the form of mist, which can be captured by the particle filter before entering the chemical adsorber. In Europe and jurisdictions with similar rules such as Russia and Australia, filter types are given suffix numbers to indicate their capacity. For non-particle hazards, the level "1" is assumed and a number "2" is used to indicate a better level. For particles (P), three levels are always given with the number. [31] In the US, only the particle part is further classified by NIOSH air filtration ratings. [32]

A filter type that can protect against multiple hazards is notated with the European symbols concatenated with each other. Examples include ABEK, ABEK-P3, and ABEK-HgP3. [31] A2B2E2K2-P3 is the highest rating of filter available.[ when? ] An entirely different "multi/CBRN" filter class with an olive color is used in the US. [32]

Filtration may be aided with an air pump to improve wearer comfort. Filtration of air is only possible if there is sufficient oxygen in the first place. Thus, when handling asphyxiants, or when ventilation is poor or the hazards are unknown, filtration is not possible and air must be supplied (with a SCBA system) from a pressurized bottle as in scuba diving.

Use

A 1939 Second World War-era baby's gas mask in Monmouth Regimental Museum. This design covered the whole of the baby except for its legs. Monmouth Regimental Museum - QRpedia 5.JPG
A 1939 Second World War-era baby's gas mask in Monmouth Regimental Museum. This design covered the whole of the baby except for its legs.
A worker in a plant nursery wears a respirator to protect against the insecticides sprayed in the greenhouses, 1930. Aalsmeer een medewerker van kwekerij Baardse met gasmasker tegen het inademen v, Bestanddeelnr 191-0038.jpg
A worker in a plant nursery wears a respirator to protect against the insecticides sprayed in the greenhouses, 1930.

A modern mask typically is constructed of an elastic polymer in various sizes. It is fitted with various adjustable straps which may be tightened to secure a good fit. Crucially, it is connected to a filter cartridge near the mouth either directly, or via a flexible hose. Some models contain drinking tubes which may be connected to a water bottle. Corrective lens inserts are also available for users who require them.

Masks are typically tested for fit before use. After a mask is fitted, it is often tested by various challenge agents. Isoamyl acetate, a synthetic banana flavourant, and camphor are often used as innocuous challenge agents. In the military, teargases such as CN, CS, and stannic chloride in a chamber may be used to give the users confidence in the efficacy of the mask. [33]

Shortcomings

The protection of a gas mask comes with some disadvantages. The wearer of a typical gas mask must exert extra effort to breathe, and some of the exhaled air is re-inhaled due to the dead space between the facepiece and the user's face. The exposure to carbon dioxide may exceed its OELs (0.5% by volume/9 grammes per cubic metre for an eight-hour shift; 1.4%/27 grammes per m3 for 15 minutes' exposure) [34] by a factor of many times: for gas masks and elastomeric respirators, up to 2.6% [35] ); [36] and in case of long-term use, headache, [37] dermatitis and acne [38] may appear. The UK HSE textbook recommends limiting the use of respirators without air supply (that is, not PAPR) to one hour. [39]

Reaction and exchange

This principle relies on substances harmful to humans being usually more reactive than air. This method of separation will use some form of generally reactive substance (for example an acid) coating or supported by some solid material. An example is synthetic resins. These can be created with different groups of atoms (usually called functional groups) that have different properties. Thus a resin can be tailored to a particular toxic group. When the reactive substance comes in contact with the resin, it will bond to it, removing it from the air stream. It may also exchange with a less harmful substance at this site.

Though it was crude, the hypo helmet was a stopgap measure for British troops in the trenches that offered at least some protection during a gas attack. As the months passed and poison gas was used more often, more sophisticated gas masks were developed and introduced. There are two main difficulties with gas mask design:

See also

Notes

  1. Rumpf, Hans. Gasschutz.
  2. " Popular Mechanics ". January 1984. p. 163
  3. Hill, Donald R. (1991). "Mechanical Engineering in the Medieval Near East". Scientific American. Vol. 264, no. 5. pp. 100–105. doi:10.1038/scientificamerican0591-100. ISSN   0036-8733. JSTOR   24936907.
  4. Von Humboldt, Alexander (1799). Ueber die unterirdischen Gasarten und die Mittel, ihren Nachtheil zu vermindern: Ein Beytrag zur Physik der praktischen Bergbaukunde. Braunschweig, Friedrich Vieweg.
  5. "The invention of the gas mask". Ian Taggart. Archived from the original on May 2, 2013.
  6. Drobnicki, John A.; Asaro, Richard (2001). "Historical Fabrications on the Internet". In Su, Di (ed.). Evolution in Reference and Information Services: The Impact of the Internet. Binghamton, New York: Haworth Information Press. p. 144. ISBN   978-0-7890-1723-9.
  7. US 6529A, Haslett, Lewis P.,"Lung Protector",issued 1849-06-12
  8. Alvin K. Benson (2010). Inventors and inventions. Salem Press. ISBN   978-1-58765-526-5.
  9. The Environment and Its Effect Upon Man: Symposium Held at Harvard School of Public Health, August 24-August 29, 1936, as Part of Harvard University Tercentenary Celebration, 1636-1936. Harvard School of Public Health. 1937.
  10. Gates, Henry Louis Jr.; Higginbotham, Evelyn Brooks (April 29, 2004). African American Lives. Oxford University Press. ISBN   9780199882861.
  11. "Garrett Augustus Morgan". PBS Who Made America?. He sold the hoods to the U.S. Navy, and the Army used them in World War I.
  12. "Second Battle of Ypres Begins". history.com. Retrieved April 22, 2018.
  13. Wetherell & Mathers 2007, p. 157.
  14. Victor Lefebure (1923). The Riddle of the Rhine: Chemical Strategy in Peace and War . The Chemical Foundation Inc. ISBN   0-585-23269-5.
  15. "Macpherson Gas Hood . Accession #980.222". The Rooms Provincial Museum Archives (St. John's, NL). Retrieved August 5, 2017.
  16. Mayer-Maguire & Baker 2015.
  17. "Biographical entry Macpherson, Cluny (1879 - 1966)". livesonline.rcseng.ac.uk. Retrieved April 22, 2018.
  18. "The UK". The Gas Mask Database.
  19. Once Worthless Things that have Suddenly Become of Value, Popular Science monthly, December 1918, page 80, scanned by Google Books
  20. Kozhevnikov, A B (2004). Stalin's great science: the times and adventures of Soviet physicists (illustrated, reprint ed.). Imperial College Press. pp. 10–11. ISBN   978-1-86094-419-2 . Retrieved April 28, 2009.
  21. "Gas-Masks for Dogs / Dumb Heroes of the Fighting Front", Popular Science monthly, December 1918, page 75, Scanned by Google Books
  22. "Gas Masks to Guard Horses and Dogs in War" Popular Mechanics, July 1934, bottom pg. 75
  23. Pittsburgh Post-Gazette, November 30, 1960
  24. "Respirator, Anti-Gas (Light) MKII: With Haversack Carrier & contents".
  25. "Iraqi Scientist Reports on German, Other Help for Iraq Chemical Weapons Program". fas.org. Retrieved 2021-06-28.
  26. Zanders, Jean Pascal (March 7, 2001). "Iranian Use of Chemical Weapons: A Critical Analysis of Past Allegations". CNS Briefings. James Martin Center for Nonproliferation Studies. Archived from the original on March 20, 2015. Retrieved March 27, 2016.
  27. "Porton Down report on the presence of asbestos in World War II respirator canisters" (PDF). p. 2 (summary). Archived (PDF) from the original on 2019-05-02.
  28. Burns, Judith (May 13, 2014). "Ban wartime gas masks, schools told". BBC News. Retrieved August 21, 2018.
  29. Dail, David H.; Hammar, Samuel P.; Colby, Thomas V. (December 6, 2012). Pulmonary Pathology — Tumors. Springer Science & Business Media. ISBN   978-1-4612-2496-9.
  30. "OPERATOR'S MANUAL" (PDF). Archived from the original (PDF) on 2016-04-29. Retrieved 2022-02-05.
  31. 1 2 3 "Guide for selection and use of filtering devices" (PDF). draeger.com. Archived from the original (PDF) on May 26, 2012. Retrieved February 22, 2013.
  32. 1 2 3 "OSHA Bulletin: General Respiratory Protection Guidance for Employers and Workers". Occupational Safety and Health Administration.
  33. "Archived copy" (PDF). Archived from the original (PDF) on October 20, 2012. Retrieved July 9, 2010.{{cite web}}: CS1 maint: archived copy as title (link)
  34. Popova, Anna, ed. (2018). "Substance #2138 Carbon dioxide". Hygienic standard 2.2.5.3532-18.Occupational exposure limits for toxic substances in workplace air [ГН 2.2.5.3532-18 Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны] (in Russian). Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. p. 170. Archived from the original on 2022-03-11. Retrieved 2020-10-01.
  35. Mean values for several models; some models may provide a stronger exposure to carbon dioxide.
  36. Sinkule, E.; Turner, N.; Hota, S. (2003). "Automated breathing and metabolic simulator (ABMS) CO2 test for powered and non-powered air-purifying respirators, airline respirators, and gas mask". American Industrial Hygiene Conference and Exposition, May 10-15, 2003. Dallas, Texas: American Industrial Hygiene Association. p. 54. copy
  37. Lim, E.C.H.; Seet, R.C.S.; Lee, K.-H.; Wilder-Smith, E.P.V.; Chuah, B.Y.S.; Ong, B.K.C. (2006). "Headaches and the N95 face-mask amongst healthcare providers". Acta Neurologica Scandinavica. 113 (3). John Wiley & Sons: 199–202. doi:10.1111/j.1600-0404.2005.00560.x. ISSN   0001-6314. PMC   7159726 . PMID   16441251.
  38. Chris C.I. Foo, Anthony T.J. Goon, Yung-Hian Leow, Chee-Leok Goh (2006). "Adverse skin reactions to personal protective equipment against severe acute respiratory syndrome – a descriptive study in Singapore". Contact Dermatitis. 55 (5). John Wiley & Sons: 291–294. doi:10.1111/j.1600-0536.2006.00953.x. ISSN   0105-1873. PMC   7162267 . PMID   17026695.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. The Health and Safety Executive (2013). Respiratory protective equipment at work. A practical guide. HSG53 (4 ed.). Crown. p. 59. ISBN   978-0-71766-454-2 . Retrieved June 10, 2018.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemical, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">Respirator</span> Device worn to protect the user from inhaling contaminants

A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respirators: the air-purifying respirator, in which respirable air is obtained by filtering a contaminated atmosphere, and the air-supplied respirator, in which an alternate supply of breathable air is delivered. Within each category, different techniques are employed to reduce or eliminate noxious airborne contaminants.

A breathing mask is a mask that covers the mouth, nose, and optionally other parts of the face or head, designed to constrain and direct the wearer's breath to and/or from a particular breathing apparatus. It may mean, or be part of, one of these types:

<span class="mw-page-title-main">Immediately dangerous to life or health</span> Exposure to dangerous levels of airborne contaminants

The term immediately dangerous to life or health (IDLH) is defined by the US National Institute for Occupational Safety and Health (NIOSH) as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50. The Occupational Safety and Health Administration (OSHA) regulation defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere."

<span class="mw-page-title-main">Hazmat suit</span> Protective suit against chemical, bacteriological, and nuclear risks

A hazmat suit is a piece of personal protective equipment that consists of an impermeable whole-body garment worn as protection against hazardous materials.

<span class="mw-page-title-main">Smoke hood</span> Device to protect the user from smoke inhalation in an emergency

A smoke hood, also called an Air-Purifying Respiratory Protective Smoke Escape Device (RPED), is a hood wherein a transparent airtight bag seals around the head of the wearer while an air filter held in the mouth connects to the outside atmosphere and is used to breathe. Smoke hoods are a class of emergency breathing apparatus intended to protect victims of fire from the effects of smoke inhalation. A smoke hood is a predecessor to the gas mask. The first modern smoke hood design was by Garrett Morgan and patented in 1912.

<span class="mw-page-title-main">Escape breathing apparatus</span> Self contained breathing apparatus providing gas to escape from a hazardous environment

Escape breathing apparatus, also called escape respirators, escape sets, self-rescuer masks, emergency life saving apparatus (ELSA), emergency escape breathing devices (EEBD), and Respiratory Protective Smoke Escape Devices (RPED), are portable breathing apparatus that provide the wearer with respiratory protection for a limited period, intended for escape from or through an environment where there is no breathable ambient atmosphere. This includes escape through water and in areas containing harmful gases or fumes or other atmospheres immediately dangerous to life or health (IDLH).

<span class="mw-page-title-main">M17 gas mask</span> Gas mask used by the US military

The M17 Protective Mask is a series of gas masks that were designed and produced in 1959 to provide protection from all types of known chemical and biological agents present. The M-17 was issued to troops in the Vietnam War, and was standard issue for the U.S. Military until it was replaced by the M40 Field Protective Mask for the U.S. Army and USMC in the mid 1990s while the U.S. Air Force and U.S. Navy replaced it for the MCU-2/P Gas Mask in the mid-1980s.

<span class="mw-page-title-main">Usage of personal protective equipment</span>

The use of personal protective equipment (PPE) is inherent in the theory of universal precaution, which requires specialized clothing or equipment for the protection of individuals from hazard. The term is defined by the Occupational Safety and Health Administration (OSHA), which is responsible for PPE regulation, as the "equipment that protects employees from serious injury or illness resulting from contact with chemical, radiological, physical, electrical, mechanical, or other hazards." While there are common forms of PPEs such as gloves, eye shields, and respirators, the standard set in the OSHA definition indicates a wide coverage. This means that PPE involves a sizable range of equipment. There are several ways to classify them such as how gears could be physiological or environmental. The following list, however, sorts personal protective equipment according to function and body area.

<span class="mw-page-title-main">Respirator fit test</span> Safety procedure for testing PPE air-tightness

A respirator fit test checks whether a respirator properly fits the face of someone who wears it. The fitting characteristic of a respirator is the ability of the mask to separate a worker's respiratory system from ambient air.

<span class="mw-page-title-main">Chemical cartridge</span> Container that cleans pollution from air inhaled through it

A respirator cartridge or canister is a type of filter that removes gases, volatile organic compounds (VOCs), and other vapors from air through adsorption, absorption, or chemisorption. It is one of two basic types of filters used by air-purifying respirators. The other is a mechanical filter, which removes only particulates. Hybrid filters combine the two.

<span class="mw-page-title-main">Powered air-purifying respirator</span>

A powered air-purifying respirator (PAPR) is a type of respirator used to safeguard workers against contaminated air. PAPRs consist of a headgear-and-fan assembly that takes ambient air contaminated with one or more type of pollutant or pathogen, actively removes (filters) a sufficient proportion of these hazards, and then delivers the clean air to the user's face or mouth and nose. They have a higher assigned protection factor than filtering facepiece respirators such as N95 masks. PAPRs are sometimes called positive-pressure masks, blower units, or just blowers.

<span class="mw-page-title-main">Respirator assigned protection factors</span>

The respiratory protective devices (RPD) can protect workers only if their protective properties are adequate to the conditions in the workplace. Therefore, specialists have developed criteria for the selection of proper, adequate respirators, including the Assigned Protection Factors (APF) - the decrease of the concentration of harmful substances in the inhaled air, which to be provided with timely and proper use of a certified respirator of certain types (design) by taught and trained workers, when the employer performs an effective respiratory protective device programme.

Respiratory protective equipment (RPE), also called protective breathing equipment (PBE) in the US, is a form of personal protective equipment designed to protect the wearer from a variety of airborne hazards in the form of a gas, fume, mist, dust or vapour. Respirators filter the air to remove harmful particles and alongside the breathing apparatus (BA) provides clean air for the worker to breathe.

<span class="mw-page-title-main">Small box respirator</span> British gas mask

The Small Box Respirator (SBC) was a British gas mask of the First World War and a successor to the Large Box Respirator. In late 1916, the respirator was introduced by the British with the aim to provide reliable protection against chlorine and phosgene gases. The respirator offered a first line of defence against these. The use of mustard gas, was begun by the Germans; a vesicant ("blister agent") that burnt the skin of individuals that were exposed to it. Death rates were high with exposure to both the mixed phosgene, chlorine and mustard gas, however with soldiers having readily available access to the small box respirator, death rates had lowered significantly. Light and reasonably fitting, the respirator was a key piece of equipment to protect soldiers on the battlefield.

<span class="mw-page-title-main">Mechanical filter (respirator)</span> Air-filtering face masks or mask attachments

Mechanical filters are a class of filter for air-purifying respirators that mechanically stops particulates from reaching the wearer's nose and mouth. They come in multiple physical forms.

<span class="mw-page-title-main">Elastomeric respirator</span> Respirator with a rubber face seal

Elastomeric respirators, also called reusable air-purifying respirators, seal to the face with elastomeric material, which may be a natural or synthetic rubber. They are generally reusable. Full-face versions of elastomeric respirators seal better and protect the eyes.

FFP standards refer to the filtering half mask classification by EN 149, a European standard of testing and marking requirements for filtering half masks. FFP standard masks cover the nose, mouth and chin and may have inhalation and/or exhalation valves.

<span class="mw-page-title-main">Supplied-air respirator</span> Breathing apparatuus remotely supplied by an air hose

A supplied-air respirator (SAR) or air-line respirator is a breathing apparatus used in places where the ambient air may not be safe to breathe. It uses an air hose to supply air from outside the danger zone. It is similar to a self-contained breathing apparatus (SCBA), except that SCBA users carry their air with them in high pressure cylinders, while SAR users get it from a remote stationary air supply connected to them by a hose.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.