Respiratory gas humidification

Last updated

Respiratory gas humidification is a method of artificially conditioning respiratory gas for the patient during therapy, and involves humidification, warming, and occasionally filtration of the gas being delivered. If these three measures are not performed to compensate for the natural conditioning of air by the respiratory system, lung infections and lung tissue damage may occur. This is particularly problematic in high gas-flow therapies such as [mechanical ventilation], in patient populations with highly sensitive respiratory tracts (i.e. asthmatics), or among those requiring ventilation for longer periods of time. The two methods currently available for this purpose are active or passive respiratory gas humidification.

Contents

Active respiratory gas humidifiers

An active respiratory gas humidifier ensures that patients on mechanical ventilation are supplied with optimally conditioned respiratory gas. In active humidifying processes, moisture and heat is input to respiratory gas by an electrically powered humidifier. Performance data and safety-related requirements for active respiratory gas humidifiers are specified by the standard ISO 8185. According to that standard, the minimum water content of inspired respiratory gas is ca. 33 mg/dm³ and the maximum respiratory gas temperature is ca. 42 °C.

The aggregation of water in the gas produced by an active respiratory gas humidifier may be a suspension, or aerosol, which is produced by a nebulizer; or particulate water, output from an evaporator or bubble humidifier.

Nebulizers

Nebulizers generate aerosols consisting of droplets of various sizes that are admixed to the inspired respiratory gas. Types of nebulizers currently on the market include

  1. Small volume nebulizers, which are used to administer medications such as salbuterol or albuterol.
  2. Large volume nebulizers, which are similar to bubble humidifiers except for the addition of an air entrainment port, and
  3. Ultrasonic nebulizers, which may carry a risk of overwatering the patient.

The high density mist produced by nebulizers is useful in decreasing the viscosity of respiratory secretions in those suffering from conditions such as cystic fibrosis, croup, epiglottitis, and bronchiectasis.

Evaporators

Evaporators enrich the inspired respiratory gas with water vapor. In a throughflow evaporator, the inspiration flow is led through a warmed up water bath, in case of a surface evaporator however the inspiration flow is guided along the surface of the water level. Consequently, a surface evaporator transports only water vapor and no water droplets into the patient. The advantage of it is, water vapor doesn't carry any germs[ citation needed ]. Therefore, the risk of passing on germs by surface evaporators is minimal[ citation needed ].

Bubble humidifiers

In a bubble humidifier, or bubble bottle as they are affectionately known by respiratory therapists, the inspiration flow is guided through a capillary system. In this capillary system warmed up water is circulating. Although the humidifying capacity of a bubble respiratory gas humidifier is rather low, it may be improved by increasing the water temperature. A bubble bottle is mostly used in oxygen therapy with high flow rates via a mask or nasal cannula in order to prevent drying of the mucous membranes in the nose and mouth.

Passive respiratory gas humidifiers

Passive respiratory gas humidifiers are independent from any external energy source or external water supply. They function as heat and moisture exchangers (HMEs) and are placed like an artificial nose between a tube and Y piece.[ clarification needed ][ citation needed ] Here they withdraw heat and moisture from expirations, which they resupply to the inspired gas during the following inspiration. As there are significant functional differences among the various HMEs on the market, respiratory therapists should test the efficacy of each individual model. The ideal HME has high reversible water retention capacity, small internal volume, and low flow resistance.[ citation needed ]

To enable the absorption of sufficient amounts of water and heat, the expiratory stream of respiratory gas must be fully filtered through the HME. Leakages in the system, such as may be caused by bronchial fistulae, will render this system less effective.[ clarification needed ] Other negative effects of this technology include increased secretions (i.e. mucus) and nosebleeds, either or which may clog an HME. In such cases, the application of active respiratory gas humidifiers is recommended.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Condensation</span> Condensation is the change of state of matter from a gas phase into a liquid phase.

Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to liquid water when in contact with a liquid or solid surface or cloud condensation nuclei within the atmosphere. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition.

<span class="mw-page-title-main">Boiling</span> Rapid phase transition from liquid to gas or vapour

Boiling is the rapid phase transition from liquid to gas or vapor; the reverse of boiling is condensation. Boiling occurs when a liquid is heated to its boiling point, so that the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. Boiling and evaporation are the two main forms of liquid vapourization.

<span class="mw-page-title-main">Humidity</span> Concentration of water vapour in the air

Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present.

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Oxygen therapy</span> Use of oxygen as a medical treatment

Oxygen therapy, also referred to as supplemental oxygen, is the use of oxygen as medical treatment. Supplemental oxygen can also refer to the use of oxygen enriched air at altitude. Acute indications for therapy include hypoxemia, carbon monoxide toxicity and cluster headache. It may also be prophylactically given to maintain blood oxygen levels during the induction of anesthesia. Oxygen therapy is often useful in chronic hypoxemia caused by conditions such as severe COPD or cystic fibrosis. Oxygen can be delivered via nasal cannula, face mask, or endotracheal intubation at normal atmospheric pressure, or in a hyperbaric chamber. It can also be given through bypassing the airway, such as in ECMO therapy.

<span class="mw-page-title-main">Heat pipe</span> Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

<span class="mw-page-title-main">Nebulizer</span> Drug delivery device

In medicine, a nebulizer or nebuliser is a drug delivery device used to administer medication in the form of a mist inhaled into the lungs. Nebulizers are commonly used for the treatment of asthma, cystic fibrosis, COPD and other respiratory diseases or disorders. They use oxygen, compressed air or ultrasonic power to break up solutions and suspensions into small aerosol droplets that are inhaled from the mouthpiece of the device. An aerosol is a mixture of gas and solid or liquid particles.

<span class="mw-page-title-main">Evaporative cooler</span> Device that cools air through the evaporation of water

An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

<span class="mw-page-title-main">Humidifier</span> Device that increases humidity

A humidifier is a household appliance or device designed to increase the moisture level in the air within a room or an enclosed space. It achieves this by emitting water droplets or steam into the surrounding air, thereby raising the humidity.

<span class="mw-page-title-main">Metered-dose inhaler</span> Device that helps deliver a specific amount of medication to the lungs

A metered-dose inhaler (MDI) is a device that delivers a specific amount of medication to the lungs, in the form of a short burst of aerosolized medicine that is usually self-administered by the patient via inhalation. It is the most commonly used delivery system for treating asthma, chronic obstructive pulmonary disease (COPD) and other respiratory diseases. The medication in a metered dose inhaler is most commonly a bronchodilator, corticosteroid or a combination of both for the treatment of asthma and COPD. Other medications less commonly used but also administered by MDI are mast cell stabilizers, such as cromoglicate or nedocromil.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Thermospray</span>

Thermospray is a soft ionization source by which a solvent flow of liquid sample passes through a very thin heated column to become a spray of fine liquid droplets. As a form of atmospheric pressure ionization in mass spectrometry these droplets are then ionized via a low-current discharge electrode to create a solvent ion plasma. A repeller then directs these charged particles through the skimmer and acceleration region to introduce the aerosolized sample to a mass spectrometer. It is particularly useful in liquid chromatography-mass spectrometry (LC-MS).

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Heated humidified high-flow therapy</span> Respiratory support method

Heated humidified high-flow therapy, often simply called high flow therapy, is a type of respiratory support that delivers a flow of medical gas to a patient of up to 60 liters per minute and 100% oxygen through a large bore or high flow nasal cannula. Primarily studied in neonates, it has also been found effective in some adults to treat hypoxemia and work of breathing issues. The key components of it are a gas blender, heated humidifier, heated circuit, and cannula.

Heat and moisture exchangers (HME) are devices used in mechanically ventilated patients intended to help prevent complications due to "drying of the respiratory mucosa, such as mucus plugging and endotracheal tube (ETT) occlusion." HMEs are one type of commercial humidification system, which also include non-heated-wire humidifiers and heated-wire humidifiers.

<span class="mw-page-title-main">Heat and moisture exchanger after laryngectomy</span>

Heat and moisture exchangers (HME) are used after laryngectomy to help reduce breathing restrictions and compensate nasal functions.

Surgical humidification is the conditioning of insufflation gas with water vapour (humidity) and heat during surgery. Surgical humidification is used to reduce the risk of tissue drying and evaporative cooling.

<span class="mw-page-title-main">Wells curve</span> Science of medicine

The Wells curve is a diagram, developed by W. F. Wells in 1934, which describes what is expected to happen to small droplets once they have been exhaled into air. Coughing, sneezing, and other violent exhalations produce high numbers of respiratory droplets derived from saliva and/or respiratory mucus, with sizes ranging from about 1 µm to 2 mm. Wells' insight was that such droplets would have two distinct fates, depending on their sizes. The interplay of gravity and evaporation means that droplets larger than a humidity-determined threshold size would fall to the ground due to gravity, while droplets smaller than this size would quickly evaporate, leaving a dry residue that drifts in the air. Since droplets from an infected person may contain infectious bacteria or viruses, these processes influence transmission of respiratory diseases.

References