Phosphorus tricyanide

Last updated
Phosphorus tricyanide
P(CN)3.svg
Names
Other names
Tricyanophosphine
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C3N3P/c4-1-7(2-5)3-6
    Key: VXFKMOLPHLQGLH-UHFFFAOYSA-N
  • N#CP(C#N)C#N
Properties
P(CN)3
Appearancewhite crystals
Boiling point 190 °C (374 °F; 463 K) sublimes [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Phosphorus tricyanide is an inorganic compound with the chemical formula P(CN)3. It can be produced by the reaction of phosphorus trichloride and trimethyl(iso)cyanosilane. [2] The reaction of phosphorus tribromide and silver cyanide in diethyl ether produce phosphorus tricyanide too. [1] Its thermal decomposition can produce graphite phase C3N3P. [3] Phosphorus tricyanide reacts with Re(CO)5FBF3 to form {P[CN-Re(CO)5]3}(BF4)3. [4]

Related Research Articles

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resulting aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and drugs. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

In retrosynthetic analysis, a synthon is a hypothetical unit within a target molecule that represents a potential starting reagent in the retroactive synthesis of that target molecule. The term was coined in 1967 by E. J. Corey. He noted in 1988 that the "word synthon has now come to be used to mean synthetic building block rather than retrosynthetic fragmentation structures". It was noted in 1998 that the phrase did not feature very prominently in Corey's 1981 book The Logic of Chemical Synthesis, as it was not included in the index. Because synthons are charged, when placed into a synthesis a neutral form is found commercially instead of forming and using the potentially very unstable charged synthons.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry is the chemistry of organoboron compounds or organoboranes, which are chemical compounds of boron and carbon that are organic derivatives of borane (BH3), for example trialkyl boranes..

<span class="mw-page-title-main">Carbodiimide</span>

In organic chemistry, a carbodiimide is a functional group with the formula RN=C=NR. They are exclusively synthetic. A well known carbodiimide is dicyclohexylcarbodiimide, which is used in peptide synthesis. Dialkylcarbodiimides are stable. Some diaryl derivatives tend to convert to dimers and polymers upon standing at room temperature, though this mostly occurs with low melting point carbodiimides that are liquids at room temperature. Solid diaryl carbodiimides are more stable, but can slowly undergo hydrolysis in the presence of water over time.

<span class="mw-page-title-main">Phosphaalkyne</span>

In chemistry, a phosphaalkyne is an organophosphorus compound containing a triple bond between phosphorus and carbon with the general formula R-C≡P. Phosphaalkynes are the heavier congeners of nitriles, though, due to the similar electronegativities of phosphorus and carbon, possess reactivity patterns reminiscent of alkynes. Due to their high reactivity, phosphaalkynes are not found naturally on earth, but the simplest phosphaalkyne, phosphaethyne (H-C≡P) has been observed in the interstellar medium.

A superbase is a compound that has a particularly high affinity for protons. Superbases are of theoretical interest and potentially valuable in organic synthesis. Superbases have been described and used since the 1850s.

<i>tert</i>-Butyllithium Chemical compound

tert-Butyllithium is a chemical compound with the formula (CH3)3CLi. As an organolithium compound, it has applications in organic synthesis since it is a strong base, capable of deprotonating many carbon molecules, including benzene. tert-Butyllithium is available commercially as hydrocarbon solutions; it is not usually prepared in the laboratory.

In organic chemistry, umpolung or polarity inversion is the chemical modification of a functional group with the aim of the reversal of polarity of that group. This modification allows secondary reactions of this functional group that would otherwise not be possible. The concept was introduced by D. Seebach and E.J. Corey. Polarity analysis during retrosynthetic analysis tells a chemist when umpolung tactics are required to synthesize a target molecule.

<span class="mw-page-title-main">Polyphosphazene</span>

Polyphosphazenes include a wide range of hybrid inorganic-organic polymers with a number of different skeletal architectures with the backbone P-N-P-N-P-N-. In nearly all of these materials two organic side groups are attached to each phosphorus center. Linear polymers have the formula (N=PR1R2)n, where R1 and R2 are organic (see graphic). Other architectures are cyclolinear and cyclomatrix polymers in which small phosphazene rings are connected together by organic chain units. Other architectures are available, such as block copolymer, star, dendritic, or comb-type structures. More than 700 different polyphosphazenes are known, with different side groups (R) and different molecular architectures. Many of these polymers were first synthesized and studied in the research group of Harry R. Allcock.

In organometallic chemistry, a transition metal indenyl complex is a coordination compound that contains one or more indenyl ligands. The indenyl ligand is formally the anion derived from deprotonation of indene. The η5-indenyl ligand is related to the η5cyclopentadienyl anion (Cp), thus indenyl analogues of many cyclopentadienyl complexes are known. Indenyl ligands lack the 5-fold symmetry of Cp, so they exhibit more complicated geometries. Furthermore, some indenyl complexes also exist with only η3-bonding mode. The η5- and η3-bonding modes sometimes interconvert.

<span class="mw-page-title-main">Organoiridium chemistry</span>

Organoiridium chemistry is the chemistry of organometallic compounds containing an iridium-carbon chemical bond. Organoiridium compounds are relevant to many important processes including olefin hydrogenation and the industrial synthesis of acetic acid. They are also of great academic interest because of the diversity of the reactions and their relevance to the synthesis of fine chemicals.

Chiral Lewis acids (CLAs) are a type of Lewis acid catalyst. These acids affect the chirality of the substrate as they react with it. In such reactions, synthesis favors the formation of a specific enantiomer or diastereomer. The method is an enantioselective asymmetric synthesis reaction. Since they affect chirality, they produce optically active products from optically inactive or mixed starting materials. This type of preferential formation of one enantiomer or diastereomer over the other is formally known as asymmetric induction. In this kind of Lewis acid, the electron-accepting atom is typically a metal, such as indium, zinc, lithium, aluminium, titanium, or boron. The chiral-altering ligands employed for synthesizing these acids often have multiple Lewis basic sites that allow the formation of a ring structure involving the metal atom.

<span class="mw-page-title-main">DuPhos</span> Class of chemical compounds

DuPhos is a class of organophosphorus compound that are used ligands for asymmetric synthesis. The name DuPhos is derived from (1) the chemical company that sponsored the research leading to this ligand's invention, DuPont and (2) the compound is a diphosphine ligand type. Specifically it is classified as a C2-symmetric ligand, consisting of two phospholanes rings affixed to a benzene ring.

<span class="mw-page-title-main">Transition metal fullerene complex</span>

A transition metal fullerene complex is a coordination complex wherein fullerene serves as a ligand. Fullerenes are typically spheroidal carbon compounds, the most prevalent being buckminsterfullerene, C60.

William B. Tolman an American inorganic chemist focusing on the synthesis and characterization of model bioinorganic systems, and organometallic approaches towards polymer chemistry. He has served as Editor in Chief of the ACS journal Inorganic Chemistry, and as a Senior Investigator at the NSF Center for Sustainable Polymers. Tolman is a Fellow of the American Association for the Advancement of Science and the American Chemical Society.

<span class="mw-page-title-main">Phosphenium</span> Divalent cations of phosphorus

Phosphenium ions, not to be confused with phosphonium or phosphirenium, are divalent cations of phosphorus of the form [PR2]+. Phosphenium ions have long been proposed as reaction intermediates.

Transhalogenation is a substitution reaction in which the halide of a halide compound is exchanged for another halide.

<i>m</i>-Terphenyl Organic ligand

m-Terphenyls (also known as meta-terphenyls, meta-diphenylbenzenes, or meta-triphenyls) are organic molecules composed of two phenyl groups bonded to a benzene ring in the one and three positions. The simplest formula is C18H14, but many different substituents can be added to create a diverse class of molecules. Due to the extensive pi-conjugated system, the molecule it has a range of optical properties and because of its size, it is used to control the sterics in reactions with metals and main group elements. This is because of the disubstituted phenyl rings, which create a pocket for molecules and elements to bond without being connected to anything else. It is a popular choice in ligand, and the most chosen amongst the terphenyls because of its benefits in regards to sterics. Although many commercial methods exist to create m-terphenyl compounds, they can also be found naturally in plants such as mulberry trees.

Heteroatomic multiple bonding between group 13 and group 15 elements are of great interest in synthetic chemistry due to their isoelectronicity with C-C multiple bonds. Nevertheless, the difference of electronegativity between group 13 and 15 leads to different character of bondings comparing to C-C multiple bonds. Because of the ineffective overlap between p𝝅 orbitals and the inherent lewis acidity/basicity of group 13/15 elements, the synthesis of compounds containing such multiple bonds is challenging and subject to oligomerization. The most common example of compounds with 13/15 group multiple bonds are those with B=N units. The boron-nitrogen-hydride compounds are candidates for hydrogen storage. In contrast, multiple bonding between aluminium and nitrogen Al=N, Gallium and nitrogen (Ga=N), boron and phosphorus (B=P), or boron and arsenic (B=As) are less common.

References

  1. 1 2 Noeth, Heinrich; Vetter, Hans Joachim. Dialkylaminophosphoranes. II. Preparation and reaction of dimethylaminohalophosphoranes, (Me2N)3-nPXn. Chemische Berichte, 1963. 96: 1109-1118. ISSN   0009-2940.
  2. T. A. Bither, W. H. Knoth, R. V. Lindsey, W. H. Sharkey (August 1958). "Trialkyl- and Triaryl(iso)cyanosilanes 1". Journal of the American Chemical Society. 80 (16): 4151–4153. doi:10.1021/ja01549a010. ISSN   0002-7863. Archived from the original on 2022-06-25. Retrieved 2022-06-15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Brian L. Chaloux, Brendan L. Yonke, Andrew P. Purdy, James P. Yesinowski, Evan R. Glaser, Albert Epshteyn (2015-07-14). "P(CN) 3 Precursor for Carbon Phosphonitride Extended Solids". Chemistry of Materials. 27 (13): 4507–4510. doi:10.1021/acs.chemmater.5b01561. ISSN   0897-4756. Archived from the original on 2022-06-15. Retrieved 2022-06-15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Wolfgang Sacher, Alfred Schmidpeter, Wolfgang Beck (April 2015). "Organometallic Lewis Acids, Part LIX [1] Pentacarbonylrhenium Complexes with Phosphorus Tricyanide and Dicyanophosphide: Organometallic Lewis Acids, Part LIX". Zeitschrift für anorganische und allgemeine Chemie. 641 (5): 762–764. doi:10.1002/zaac.201500068. Archived from the original on 2022-06-15. Retrieved 2022-06-15.{{cite journal}}: CS1 maint: multiple names: authors list (link)