Phosphorus sesquisulfide

Last updated
Phosphorus sesquisulfide
P4S3.png
Phosphorus-sesquisulfide-3D-balls.png
Phosphorus sesquisulfide.jpg
Names
IUPAC names
Tetraphosphorus trisulfide
or 3,5,7-trithia-1,2,4,6-tetraphosphatricyclo[2.2.1.02,6]heptane
Other names
phosphorus trisulfide, phosphorus sesquisulfide, phosphorus sulfide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.860 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • TH4330000
UNII
  • InChI=1S/P4S3/c5-1-2-3(1)7-4(5)6-2 Yes check.svgY
    Key: RWQFRHVDPXXRQN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/P4S3/c5-1-2-3(1)7-4(5)6-2
    Key: RWQFRHVDPXXRQN-UHFFFAOYAM
  • S1P2P3SP1SP23
Properties
P4S3
Molar mass 220.093 g/mol
AppearanceYellow, yellow-green or gray solid
Density 2.08 g.cm3, [1] solid
Melting point 172.5 °C (342.5 °F; 445.6 K)
Boiling point 408 °C (766 °F; 681 K)
Structure
orthorhombic, Schönflies notation D2h
Pmnb
C3v
Related compounds
Related compounds
P4S10
P4O6
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS-pictogram-exclam.svg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phosphorus sesquisulfide is the inorganic compound with the formula P 4 S 3. It was developed by Henri Sevene and Emile David Cahen in 1898 as part of their invention of friction matches that did not pose the health hazards of white phosphorus. [2] [3] This yellow solid is one of two commercially produced phosphorus sulfides. It is a component of "strike anywhere" matches.

Contents

Depending on purity, samples can appear yellow-green to grey. The compound was discovered by G. Lemoine and first produced safely in commercial quantities in 1898 by Albright and Wilson. It dissolves in an equal weight of carbon disulfide (CS2), and in a 1:50 weight ratio of benzene. Unlike some other phosphorus sulfides, P4S3 is slow to hydrolyze and has a well-defined melting point.

Structure and synthesis

The molecule has C3v symmetry. It is a derivative of the tetrahedral (P4) unit from insertion of sulfur into three P-P bonds. The P-S and P-P distances are 2.090 and 2.235 Å, respectively. P4Se3 and P4S3 adopt the same structures. [1] These compounds can be melted together and form mixed crystals of one dissolved in the other. [4] Under higher temperatures, mixed chalcogenide molecules P4S2Se and P4SSe2 will form. [5]

P4S3 is produced by the reaction of red or white phosphorus with sulfur. Excess sulfur gives phosphorus pentasulfide (P4S10). It is estimated that 150 ton/y were produced in 1989. [6]

Applications

P4S3 and potassium chlorate, together with other materials, composes the heads of "strike-anywhere matches". [7]

Safety

Its flash point is about 100 °C. [8]

Health effects

Exposure to "strike anywhere" matches containing phosphorus sesquisulfide can cause contact dermatitis, usually in the pocket area but also on the face. [9] Exposure over a long period of time to burning match tips (containing phosphorus sesquisulfide) can result in a recurring severe primary dermatitis about the eyes and face. Loosening of the teeth has also been reported which may have been due to phosphorus poisoning. [10]

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Phosphorus</span> Chemical element, symbol P and atomic number 15

Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about one gram per kilogram. In minerals, phosphorus generally occurs as phosphate.

<span class="mw-page-title-main">Sulfur</span> Chemical element, symbol S and atomic number 16

Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

<span class="mw-page-title-main">Match</span> Device for lighting fires

A match is a tool for starting a fire. Typically, matches are made of small wooden sticks or stiff paper. One end is coated with a material that can be ignited by friction generated by striking the match against a suitable surface. Wooden matches are packaged in matchboxes, and paper matches are partially cut into rows and stapled into matchbooks. The coated end of a match, known as the match "head", consists of a bead of active ingredients and binder, often colored for easier inspection. There are two main types of matches: safety matches, which can be struck only against a specially prepared surface, and strike-anywhere matches, for which any suitably frictional surface can be used.

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to chemical compounds large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including hot springs, stagnant water bodies, as well as microbial mats in intertidal zones. Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide, or thiosulfate (as well, some species can use H2, Fe2+, or NO2) as the electron donor in their photosynthetic pathways. The sulfur is oxidized to produce granules of elemental sulfur. This, in turn, may be oxidized to form sulfuric acid.

<span class="mw-page-title-main">Sulfur monoxide</span> Chemical compound

Sulfur monoxide is an inorganic compound with formula SO. It is only found as a dilute gas phase. When concentrated or condensed, it converts to S2O2 (disulfur dioxide). It has been detected in space but is rarely encountered intact otherwise.

<span class="mw-page-title-main">Carbonyl sulfide</span> Chemical compound

Carbonyl sulfide is the chemical compound with the linear formula OCS. It is a colorless flammable gas with an unpleasant odor. It is a linear molecule consisting of a carbonyl group double bonded to a sulfur atom. Carbonyl sulfide can be considered to be intermediate between carbon dioxide and carbon disulfide, both of which are valence isoelectronic with it.

Selenium disulfide, also known as selenium sulfide, is a chemical compound and medication used to treat seborrheic dermatitis, dandruff, and pityriasis versicolor. It is applied to the affected area as a lotion or shampoo. Symptoms frequently return if treatment is stopped.

<span class="mw-page-title-main">Phosphorus sulfides</span>

Phosphorus sulfides comprise a family of inorganic compounds containing only phosphorus and sulfur. These compounds have the formula P4Sn with n ≤ 10. Two are of commercial significance, phosphorus pentasulfide, which is made on a kiloton scale for the production of other organosulfur compounds, and phosphorus sesquisulfide, used in the production of "strike anywhere matches".

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

Antimony pentasulfide is an inorganic compound of antimony and sulfur, also known as antimony red. It is a nonstoichiometric compound with a variable composition. Its structure is unknown. Commercial samples are contaminated with sulfur, which may be removed by washing with carbon disulfide in a Soxhlet extractor.

<span class="mw-page-title-main">Carbon subsulfide</span> Organic compound with the structure S=C=C=C=S

Carbon subsulfide is an organic, sulfur-containing chemical compound with the formula C3S2 and structure S=C=C=C=S. This deep red liquid is immiscible with water but soluble in organic solvents. It readily polymerizes at room temperature to form a hard black solid.

Iron(III) sulfide, also known as ferric sulfide or sesquisulfide, is one of the several binary iron sulfides. It is a solid, black powder that degrades at ambient temperature.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Thiophosphoryl fluoride</span> Chemical compound

Thiophosphoryl fluoride is an inorganic molecular gas with formula PSF3 containing phosphorus, sulfur and fluorine. It spontaneously ignites in air and burns with a cool flame. The discoverers were able to have flames around their hands without discomfort, and called it "probably one of the coldest flames known". The gas was discovered in 1888.

Phosphorus selenides are a relatively obscure group of compounds. There have been some studies of the phosphorus - selenium phase diagram and the glassy amorphous phases are reported. The compounds that have been reported are shown below. While some of phosphorus selenides are similar to their sulfide analogues, there are some new forms, molecular P2Se5 and the polymeric catena-[P4Se4]x. There is also some doubt about the existence of molecular P4Se10.

<span class="mw-page-title-main">Sulfoxylic acid</span> Chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.

Diphosphorus tetrafluoride is a gaseous compound of phosphorus and fluorine with formula P2F4. Two fluorine atoms are connected to each phosphorus atom, and there is a bond between the two phosphorus atoms. Phosphorus can be considered to have oxidation state +2, as indicated by the name phosphorus difluoride.

Neodymium(III) sulfide is a inorganic chemical compound with the formula Nd2S3 composed of a two neodymium atoms in the +3 oxidation state and three sulfur atoms in the +2 oxidation state. Like other rare earth sulfides, neodymium(III) sulfide is used as a high-performance inorganic pigment.

References

  1. 1 2 Leung, Y. C.; Waser, J.; van Houten, S.; Vos, A.; Wiegers, G. A.; Wiebenga, E. H. (1957). "The Crystal Structure of P4S3". Acta Crystallographica. 10 (9): 574–582. doi: 10.1107/S0365110X57002042 .
  2. USpatent 614350,Seyene, H.; Cahen, E. D.,"Match Composition",issued 1898-11-15
  3. US 614350
  4. Burns, Gary R.; Sarfati, Jonathan D. (1988). "Raman spectra of tetraphosphorus triselenide doped in tetraphosphorus trisulphide". Solid State Communications. 66 (4): 347–349. Bibcode:1988SSCom..66..347B. doi:10.1016/0038-1098(88)90854-X.
  5. Burns, Gary R.; Rollo, Joanne R.; Sarfati, Jonathan D. (1989). "Raman spectra of the tetraphosphorus trichalcogenide cage molecules P4S2Se and P4SSe2". Inorganica Chimica Acta. 161: 35–38. doi:10.1016/S0020-1693(00)90111-7.
  6. Bettermann, G.; Krause, W.; Riess, G.; Hofmann, T. "Phosphorus Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_527.
  7. Corbridge, D. E. C. (1995). Phosphorus: An Outline of its Chemistry, Biochemistry, and Technology (5th ed.). Amsterdam: Elsevier. pp. 115–116. ISBN   0-444-89307-5.
  8. Lewis, R.J. Sr (2007). Hawley's Condensed Chemical Dictionary (15th ed.). New York, NY: John Wiley & Sons, Inc. p. 987.
  9. Burgess, J. F.; Forsey, R. Roy (1951). "Contact Dermatitis of the Face Due to Matches". AMA Arch Derm Syphilol. American Medical Association. 64 (5): 636–637. doi:10.1001/archderm.1951.01570110106016.
  10. Burgess, J. Frederick (December 1951). "Phosphorus Sesquisulphide Poisoning". Can Med Assoc J. Canadian Medical Association. 65 (6): 567–568. PMC   1822299 . PMID   14886853.

This article contains public domain text from the NOAA as cited.