Phosphorus monoxide

Last updated

Contents

Phosphorus monoxide
Phosphorus Monoxide Structure.png
Phosphorus-monoxide-3D-vdW.png
Names
Other names
oxophosphanyl; oxidophosphorus(.); Phosphoryl
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
416
PubChem CID
  • InChI=1S/OP/c1-2
    Key: LFGREXWGYUGZLY-UHFFFAOYSA-N
  • O=[P]
Properties
PO
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Phosphorus monoxide is an unstable radical inorganic compound with molecular formula P O. [2]

Phosphorus monoxide is notable as one of the few molecular compounds containing phosphorus that has been detected outside of Earth. Other phosphorus containing molecules found in space include PN, PC, PC2, HCP and PH3. It was detected in the circumstellar shell of VY Canis Majoris and in the star forming region catalogued as AFGL 5142. The compound has been found to have been initially produced in star-forming regions, and speculated to be carried by interstellar comets throughout outer space, including to the early Earth. [2] [3] [4]

Phosphorus monoxide plays a role in the phosphorescence of phosphorus.

Discovery

In 1894 W. N. Hartley was the first to report an observation of ultraviolet emission from a phosphorus compound, that was later expanded on by Geuter. The source of the spectral lines and bands were known to be related to phosphorus, but the exact nature was unknown. In 1927 H. J. Emeléus and R. H. Purcell determined that the cause was a phosphorus oxide. But it was in 1921 that P. N. Ghosh and G. N. Ball determined that the oxide was phosphorus monoxide. [5]

Phosphorus monoxide is believed to be the most abundant phosphorus-containing molecule found in interstellar clouds. [6] Phosphorus was identified as a cosmically abundant element in 1998 after researchers found a cosmic ratio of phosphorus to hydrogen (P/H) of about 3×10−7. Even with the prevalence of phosphorus in interstellar clouds, very few phosphorus bearing molecules had been identified and found in very few sources; phosphorus nitride, PN, and the free radical CP were found in a carbon rich envelope of IRC +10215 in 1987. This suggested that more phosphorus containing molecules had to be found in interstellar space. While examining the oxygen-rich shell of the supergiant star VY Canis Majoris (VY CMa) the presence of PO was detected. VY CMa was studied using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). The telescope was able to observe the rotational frequencies of PO. ARO's 10 m SMT was able to measure the rotational transitions of PO showing J=5.5→4.5 at 240 GHz and J=6.5→5.5 at 284 GHz toward the evolved star, each consisting of well-defined lambda-doublets. Since the detection of PO towards the envelope of the VY CMa supergiant in 2001, PO has been found in many more interstellar clouds and is found in abundance around oxygen-rich shells. [7]

Formation

PO is formed when phosphorus is burnt in oxygen or ozone. It is a transient molecule observed in hot flames, or can be condensed into noble gas matrix. [8] PO can be formed in an inert gas matrix in the photolysis of P4S3O, a phosphorus oxysulfide. [9]

On Earth, phosphorus monoxide can be prepared for study by spraying phosphoric acid into a flame. Because commercial acetylene gas contains some phosphine, an oxy-acetylene flame will have weak PO emission bands in its spectrum also. In the flame, PO oxidises back to P4O10. [10]

Reactions

Phosphorescence

As white phosphorus oxidises it gives out a greenish-white glow. The glow happens as PO is oxidised by one of these reactions: PO + O → PO2; or PO + O2 →PO2 + O. [11] The possible ways that PO appears in this process is by breakup of the P2O molecule which in turn may come from P4O. [12]

Ligand

Phosphorus monoxide can act as a ligand on transition elements such as molybdenum, ruthenium and osmium. The phosphorus forms a triple bond with the metal. [13] [14] The first to be discovered was on a nickel-tungsten cluster. The WNi2P2 cluster was oxidised by a peroxide to yield a μ3-coordination, where each phosphorus atom is bound to three metal atoms. [15]

Properties

Bond

Phosphorus monoxide is a free radical with phosphorus double bonded to oxygen with phosphorus having an unpaired valence electron. The bond order is about 1.8. [5] The P=O bond in PO has a dissociation energy of 6.4 eV. [16] The bond length of the PO double bond is 1.476 Å, and free PO shows an infrared vibrational frequency of 1220 cm−1 due to the stretching of the bond. [17] The free radical nature of PO makes it highly reactive and unstable compared to other phosphorus oxides that have been further oxidized.

Spectrum

The visible to ultraviolet spectrum of phosphorus monoxide has three important bands. There is a continuum band near 540 nm. The β-system near 324 nm is due to the D2Σ→2Π transition. The γ-system has bands near 246 nm due to a A2Σ→2Π transition. Peaks in this band occur at 230, 238, 246, 253, and 260 nm in the ultraviolet. All these bands can be emission, absorption, or fluorescence depending on the method of illumination and temperature. [10] There is also a C'2Δ state. [18]

The γ-system band can be broken down into sub-bands based on the different vibrational transitions. (0,0), (0,1) and (1,0) are designations for the sub-bands produced by the transition between two vibration states, as the electronic transition occurs. Each of these contains eight series termed branches. These are oP12, P2, Q2, R2, P1, Q1, R1 and sR21. [19]

Molecule

The ionisation potential of PO is 8.39 eV. When ionised, PO forms the cation PO+. The adiabatic electron affinity of PO is 1.09 eV. On gaining an electron the PO ion forms. [5]

re in the ground state is 1.4763735 Å. [5]

The dipole moment of the molecule is 1.88 D. The phosphorus atom has a slight positive charge calculated as 0.35 of the electron. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Diatomic molecule</span> Molecule composed of any two atoms

Diatomic molecules are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen or oxygen, then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide or nitric oxide, the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar.

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Octet rule</span> Chemical rule of thumb

The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the rule is applicable for the s-block and p-block of the periodic table. Other rules exist for other elements, such as the duplet rule for hydrogen and helium, and the 18-electron rule for transition metals.

In chemistry, a hypervalent molecule is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride, sulfur hexafluoride, chlorine trifluoride, the chlorite ion in chlorous acid and the triiodide ion are examples of hypervalent molecules.

In chemistry, π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. In this type of interaction, electrons from the metal are used to bond to the ligand, which dissipates excess negative charge and stabilizes the metal. It is common in transition metals with low oxidation states that have ligands such as carbon monoxide, olefins, or phosphines. The ligands involved in π backbonding can be broken into three groups: carbonyls and nitrogen analogs, alkenes and alkynes, and phosphines. Compounds where π backbonding is prominent include Ni(CO)4, Zeise's salt, and molybdenym and iron dinitrogen complexes.

<span class="mw-page-title-main">Sulfur monoxide</span> Chemical compound

Sulfur monoxide is an inorganic compound with formula SO. It is only found as a dilute gas phase. When concentrated or condensed, it converts to S2O2 (disulfur dioxide). It has been detected in space but is rarely encountered intact otherwise.

<span class="mw-page-title-main">Vaska's complex</span> Chemical compound

Vaska's complex is the trivial name for the chemical compound trans-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO)[P(C6H5)3]2. This square planar diamagnetic organometallic complex consists of a central iridium atom bound to two mutually trans triphenylphosphine ligands, carbon monoxide and a chloride ion. The complex was first reported by J. W. DiLuzio and Lauri Vaska in 1961. Vaska's complex can undergo oxidative addition and is notable for its ability to bind to O2 reversibly. It is a bright yellow crystalline solid.

<span class="mw-page-title-main">Triplet oxygen</span> Triplet state of the dioxygen molecule

Triplet oxygen, 3O2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical: it is more stable as a triplet than a singlet. According to molecular orbital theory, the electron configuration of triplet oxygen has two electrons occupying two π molecular orbitals (MOs) of equal energy (that is, degenerate MOs). In accordance with Hund's rules, they remain unpaired and spin-parallel, which accounts for the paramagnetism of molecular oxygen. These half-filled orbitals are antibonding in character, reducing the overall bond order of the molecule to 2 from the maximum value of 3 that would occur when these antibonding orbitals remain fully unoccupied, as in dinitrogen. The molecular term symbol for triplet oxygen is 3Σ
g
.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Dioxygenyl</span> Chemical compound

The dioxygenyl ion, O+
2
, is a rarely-encountered oxycation in which both oxygen atoms have a formal oxidation state of +1/2. It is formally derived from oxygen by the removal of an electron:

Sulfur mononitride is an inorganic compound with the molecular formula SN. It is the sulfur analogue of and isoelectronic to the radical nitric oxide, NO. It was initially detected in 1975, in outer space in giant molecular clouds and later the coma of comets. This spurred further laboratory studies of the compound. Synthetically, it is produced by electric discharge in mixtures of nitrogen and sulfur compounds, or combustion in the gas phase and by photolysis in solution.

Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

<span class="mw-page-title-main">Disulfur dioxide</span> Chemical compound

Disulfur dioxide, dimeric sulfur monoxide or SO dimer is an oxide of sulfur with the formula S2O2. The solid is unstable with a lifetime of a few seconds at room temperature.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Carbon pentoxide</span> Chemical compound, unstable molecular oxide of carbon

Carbon pentaoxide, carbon pentoxide or tetraoxolan-5-one is an unstable molecular oxide of carbon. The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space. The substance could form and be present on Ganymede or Triton, moons in the outer solar system.

<span class="mw-page-title-main">Phosphorus mononitride</span> Chemical compound

Phosphorus mononitride is an inorganic compound with the chemical formula PN. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. From the Lewis structure perspective, it can be represented with a P-N triple bond with a lone pair on each atom. It is isoelectronic with N2, CO, P2, CS and SiO.

<span class="mw-page-title-main">Tricarbon monoxide</span> Chemical compound

Tricarbon monoxide C3O is a reactive radical oxocarbon molecule found in space, and which can be made as a transient substance in the laboratory. It can be trapped in an inert gas matrix or made as a short lived gas. C3O can be classified as a ketene or an oxocumulene a kind of heterocumulene.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

References

  1. Staff (2018). "Phosphorus monoxide - NIST Chemistry WebBook, SRD 69". National Institute of Standards and Technology . Retrieved 19 January 2020.
  2. 1 2 Staff (2019). "Phosphorus Monoxide". Encyclopedia of Astrobiology. pp. 1229–1230. doi:10.1007/978-3-642-11274-4_1889. ISBN   978-3-642-11271-3.
  3. ESO (15 January 2020). "Astronomers reveal interstellar thread of one of life's building blocks". Phys.org . Retrieved 15 January 2020.
  4. Rivilla, V. M.; et al. (2019). "ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets". Monthly Notices of the Royal Astronomical Society. 492: 1180–1198. arXiv: 1911.11647 . doi: 10.1093/mnras/stz3336 .
  5. 1 2 3 4 5 Moussaoui, Yahia; Ouamerali, Ourida; De Maré, George R. (October 2003). "Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data". International Reviews in Physical Chemistry. 22 (4): 641–675. doi:10.1080/01442350310001617011. S2CID   93981281.
  6. Scherer, Otto J.; Braun, Jürgen; Walther, Peter; Heckmann, Cert; Wolmershäuser, Gotthel (July 1991). "Phosphorus Monoxide(PO) as Complex Ligand". Angewandte Chemie International Edition in English. 30 (7): 852–854. doi:10.1002/anie.199108521.
  7. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (1 September 2007). "Identification of Phosphorus Monoxide (X2Πr) in VY Canis Majoris: Detection of the First P–O Bond in Space". The Astrophysical Journal. 666 (1): L29–L32. Bibcode:2007ApJ...666L..29T. doi: 10.1086/521361 . S2CID   121424802.
  8. Mielke, Zofia; McCluskey, Matthew; Andrews, Lester (January 1990). "Matrix reactions of P2 and O3 molecules". Chemical Physics Letters. 165 (2–3): 146–154. Bibcode:1990CPL...165..146M. doi:10.1016/0009-2614(90)85420-H.
  9. Mielke, Zofia; Andrews, Lester; Nguyen, Kiet A.; Gordon, Mark S. (December 1990). "Matrix-infrared spectra of structural isomers of the phosphorus oxysulfide P4S3O". Inorganic Chemistry. 29 (25): 5096–5100. doi:10.1021/ic00350a016.
  10. 1 2 Haraguchi, H.; Fowler, W.K.; Johnson, D.J.; Winefordner, J.D. (January 1976). "Molecular fluorescence spectroscopy of phosphorus monoxide in flames studied by a SIT-OMA system". Spectrochimica Acta Part A: Molecular Spectroscopy. 32 (9): 1539–1544. Bibcode:1976AcSpA..32.1539H. doi:10.1016/0584-8539(76)80200-0.
  11. Qian, Hai-Bo; Davies, Paul B.; Hamilton, Peter A. (1995). "High-resolution spectroscopic study of the oxidation of white phosphorus". Journal of the Chemical Society, Faraday Transactions. 91 (18): 2993. doi:10.1039/ft9959102993.
  12. Andrews, Lester.; Withnall, Robert. (August 1988). "Matrix reactions of oxygen atoms with P4. Infrared spectra of P4O, P2O, PO and PO2". Journal of the American Chemical Society. 110 (17): 5605–5611. doi:10.1021/ja00225a001.
  13. Wang, Weibin; Corrigan, John F.; Doherty, Simon; Enright, Gary D.; Taylor, Nicholas J.; Carty, Arthur J. (January 1996). "Phosphorus Monoxide Coordination Chemistry:  Synthesis and Structural Characterization of Tetranuclear Clusters Containing a PO Ligand". Organometallics. 15 (12): 2770–2776. doi:10.1021/om960032o.
  14. Johnson, Marc J. A.; Odom, Aaron L.; Cummins, Christopher C. (1997). "Phosphorus monoxide as a terminal ligand". Chemical Communications (16): 1523–1524. doi:10.1039/A703105J.
  15. Herrmann, Wolfgang A. (July 1991). "Between Stars and Metals: Phosphorus Monoxide, PO". Angewandte Chemie International Edition in English. 30 (7): 818–819. doi:10.1002/anie.199108181.
  16. Haraguchi, Hiroki.; Fuwa, Keiichiro. (May 2002). "Determination of phosphorus by molecular absorption flame spectrometry using the phosphorus monoxide band". Analytical Chemistry. 48 (4): 784–786. doi:10.1021/ac60368a024.
  17. Bérces, Attila; Koentjoro, Olivia; Sterenberg, Brian T.; Yamamoto, John H.; Tse, John; Carty, Arthur J. (October 2000). "Electronic Structures of Transition Metal Phosphorus Monoxide Complexes". Organometallics. 19 (21): 4336–4343. doi:10.1021/om000274v.
  18. de Brouckère, G. (December 2000). "Configuration interaction calculations of miscellaneous properties of the C'2Δ excited state and related C'2Δ-X2Πr transition bands of phosphorus monoxide". Chemical Physics. 262 (2–3): 211–228. Bibcode:2000CP....262..211D. doi:10.1016/s0301-0104(00)00301-3.
  19. Gupta, A K Sen (1 March 1935). "Rotational analysis of the ultra-violet bands of phosphorus monoxide". Proceedings of the Physical Society. 47 (2): 247–257. Bibcode:1935PPS....47..247G. doi:10.1088/0959-5309/47/2/305.