This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2020) |
Part of a series on the |
Carbon cycle |
---|
Kerogen is solid, insoluble organic matter in sedimentary rocks. It consists of a variety of organic materials, including dead plants, algae, and other microorganisms, that have been compressed and heated by geological processes. All the kerogen on earth is estimated to contain 1016 tons of carbon. This makes it the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold. [1]
The type of kerogen present in a particular rock formation depends on the type of organic material that was originally present. Kerogen can be classified by these origins: lacustrine (e.g., algal), marine (e.g., planktonic), and terrestrial (e.g., pollen and spores). The type of kerogen depends also on the degree of heat and pressure it has been subjected to, and the length of time the geological processes ran. The result is that a complex mixture of organic compounds reside in sedimentary rocks, serving as the precursor for the formation of hydrocarbons such as oil and gas. In short, kerogen amounts to fossilized organic matter that has been buried and subjected to high temperatures and pressures over millions of years, resulting in various chemical reactions and transformations.
Kerogen is insoluble in normal organic solvents and it does not have a specific chemical formula. Upon heating, kerogen converts in part to liquid and gaseous hydrocarbons. Petroleum and natural gas form from kerogen. [2] The name "kerogen" was introduced by the Scottish organic chemist Alexander Crum Brown in 1906, [3] [4] [5] [6] derived from the Greek for "wax birth" (Greek: κηρός "wax" and -gen, γένεση "birth").
The increased production of hydrocarbons from shale has motivated a revival of research into the composition, structure, and properties of kerogen. Many studies have documented dramatic and systematic changes in kerogen composition across the range of thermal maturity relevant to the oil and gas industry. Analyses of kerogen are generally performed on samples prepared by acid demineralization with critical point drying, which isolates kerogen from the rock matrix without altering its chemical composition or microstructure. [7]
Kerogen is formed during sedimentary diagenesis from the degradation of living matter. The original organic matter can comprise lacustrine and marine algae and plankton and terrestrial higher-order plants. During diagenesis, large biopolymers from, e.g., proteins, lipids, and carbohydrates in the original organic matter, decompose partially or completely. This breakdown process can be viewed as the reverse of photosynthesis. [8] These resulting units can then polycondense to form geopolymers. The formation of geopolymers in this way accounts for the large molecular weights and diverse chemical compositions associated with kerogen. The smallest units are the fulvic acids, the medium units are the humic acids, and the largest units are the humins. This polymerization usually happens alongside the formation and/or sedimentation of one or more mineral components resulting in a sedimentary rock like oil shale.
When kerogen is contemporaneously deposited with geologic material, subsequent sedimentation and progressive burial or overburden provide elevated pressure and temperature owing to lithostatic and geothermal gradients in Earth's crust. Resulting changes in the burial temperatures and pressures lead to further changes in kerogen composition including loss of hydrogen, oxygen, nitrogen, sulfur, and their associated functional groups, and subsequent isomerization and aromatization Such changes are indicative of the thermal maturity state of kerogen. Aromatization allows for molecular stacking in sheets, which in turn drives changes in physical characteristics of kerogen, such as increasing molecular density, vitrinite reflectance, and spore coloration (yellow to orange to brown to black with increasing depth/thermal maturity).
During the process of thermal maturation, kerogen breaks down in high-temperature pyrolysis reactions to form lower-molecular-weight products including bitumen, oil, and gas. The extent of thermal maturation controls the nature of the product, with lower thermal maturities yielding mainly bitumen/oil and higher thermal maturities yielding gas. These generated species are partially expelled from the kerogen-rich source rock and in some cases can charge into a reservoir rock. Kerogen takes on additional importance in unconventional resources, particularly shale. In these formations, oil and gas are produced directly from the kerogen-rich source rock (i.e. the source rock is also the reservoir rock). Much of the porosity in these shales is found to be hosted within the kerogen, rather than between mineral grains as occurs in conventional reservoir rocks. [9] [10] Thus, kerogen controls much of the storage and transport of oil and gas in shale. [9]
Another possible method of formation is that vanabin-containing organisms cleave the core out of chlorin-based compounds such as the magnesium in chlorophyll and replace it with their vanadium center in order to attach and harvest energy via light-harvesting complexes. It is theorized that the bacteria contained in worm castings, Rhodopseudomonas palustris , do this during its photoautotrophism mode of metabolism. Over time colonies of light harvesting bacteria solidify, forming kerogen [ citation needed ] .
Kerogen is a complex mixture of organic chemical compounds that make up the most abundant fraction of organic matter in sedimentary rocks. [12] As kerogen is a mixture of organic materials, it is not defined by a single chemical formula. Its chemical composition varies substantially between and even within sedimentary formations. For example, kerogen from the Green River Formation oil shale deposit of western North America contains elements in the proportions carbon 215 : hydrogen 330 : oxygen 12 : nitrogen 5 : sulfur 1. [13]
Kerogen is insoluble in normal organic solvents in part because of the high molecular weight of its component compounds. The soluble portion is known as bitumen. When heated to the right temperatures in the earth's crust, (oil window c. 50–150 °C, gas window c. 150–200 °C, both depending on how quickly the source rock is heated) some types of kerogen release crude oil or natural gas, collectively known as hydrocarbons (fossil fuels). When such kerogens are present in high concentration in rocks such as organic-rich mudrocks shale, they form possible source rocks. Shales that are rich in kerogen but have not been heated to required temperature to generate hydrocarbons instead may form oil shale deposits.
The chemical composition of kerogen has been analyzed by several forms of solid state spectroscopy. These experiments typically measure the speciations (bonding environments) of different types of atoms in kerogen. One technique is 13C NMR spectroscopy, which measures carbon speciation. NMR experiments have found that carbon in kerogen can range from almost entirely aliphatic (sp3 hybridized) to almost entirely aromatic (sp2 hybridized), with kerogens of higher thermal maturity typically having higher abundance of aromatic carbon. [14] Another technique is Raman spectroscopy. Raman scattering is characteristic of, and can be used to identify, specific vibrational modes and symmetries of molecular bonds. The first-order Raman spectra of kerogen comprises two principal peaks; [15] a so-called G band ("graphitic") attributed to in-plane vibrational modes of well-ordered sp2 carbon and a so-called D band ("disordered") from symmetric vibrational modes of sp2 carbon associated with lattice defects and discontinuities. The relative spectral position (Raman shift) and intensity of these carbon species is shown to correlate to thermal maturity, [16] [17] [18] [19] [20] [21] with kerogens of higher thermal maturity having higher abundance of graphitic/ordered aromatic carbons. Complementary and consistent results have been obtained with infrared (IR) spectroscopy, which show that kerogen has higher fraction of aromatic carbon and shorter lengths of aliphatic chains at higher thermal maturities. [22] [23] These results can be explained by the preferential removal of aliphatic carbons by cracking reactions during pyrolysis, where the cracking typically occurs at weak C–C bonds beta to aromatic rings and results in the replacement of a long aliphatic chain with a methyl group. At higher maturities, when all labile aliphatic carbons have already been removed—in other words, when the kerogen has no remaining oil-generation potential—further increase in aromaticity can occur from the conversion of aliphatic bonds (such as alicyclic rings) to aromatic bonds.
IR spectroscopy is sensitive to carbon-oxygen bonds such as quinones, ketones, and esters, so the technique can also be used to investigate oxygen speciation. It is found that the oxygen content of kerogen decreases during thermal maturation (as has also been observed by elemental analysis), with relatively little observable change in oxygen speciation. [22] Similarly, sulfur speciation can be investigated with X-ray absorption near edge structure (XANES) spectroscopy, which is sensitive to sulfur-containing functional groups such as sulfides, thiophenes, and sulfoxides. Sulfur content in kerogen generally decreases with thermal maturity, and sulfur speciation includes a mix of sulfides and thiophenes at low thermal maturities and is further enriched in thiophenes at high maturities. [24] [25]
Overall, changes in kerogen composition with respect to heteroatom chemistry occur predominantly at low thermal maturities (bitumen and oil windows), while changes with respect to carbon chemistry occur predominantly at high thermal maturities (oil and gas windows).
The microstructure of kerogen also evolves during thermal maturation, as has been inferred by scanning electron microscopy (SEM) imaging showing the presence of abundant internal pore networks within the lattice of thermally mature kerogen. [9] [26] Analysis by gas sorption demonstrated that the internal specific surface area of kerogen increases by an order of magnitude (~ 40 to 400 m2/g) during thermal maturation. [27] [28] X-ray and neutron diffraction studies have examined the spacing between carbon atoms in kerogen, revealing during thermal maturation a shortening of carbon-carbon distances in covalently bonded carbons (related to the transition from primarily aliphatic to primarily aromatic bonding) but a lengthening of carbon-carbon distances in carbons at greater bond separations (related to the formation of kerogen-hosted porosity). [29] This evolution is attributed to the formation of kerogen-hosted pores left behind as segments of the kerogen molecule are cracked off during thermal maturation.
These changes in composition and microstructure result in changes in the properties of kerogen. For example, the skeletal density of kerogen increases from approximately 1.1 g/ml at low thermal maturity to 1.7 g/ml at high thermal maturity. [30] [31] [32] This evolution is consistent with the change in carbon speciation from predominantly aliphatic (similar to wax, density < 1 g/ml) to predominantly aromatic (similar to graphite, density > 2 g/ml) with increasing thermal maturity.
Additional studies have explored the spatial heterogeneity of kerogen at small length scales. Individual particles of kerogen arising from different inputs are identified and assigned as different macerals. This variation in starting material may lead to variations in composition between different kerogen particles, leading to spatial heterogeneity in kerogen composition at the micron length scale. Heterogeneity between kerogen particles may also arise from local variations in catalysis of pyrolysis reactions due to the nature of the minerals surrounding different particles. Measurements performed with atomic force microscopy coupled to infrared spectroscopy (AFM-IR) and correlated with organic petrography have analyzed the evolution of the chemical composition and mechanical properties of individual macerals of kerogen with thermal maturation at the nanoscale. [33] These results indicate that all macerals decrease in oxygen content and increase in aromaticity (decrease in aliphalicity) during thermal maturation, but some macerals undergo large changes while other macerals undergo relatively small changes. In addition, macerals that are richer in aromatic carbon are mechanically stiffer than macerals that are richer in aliphatic carbon, as expected because highly aromatic forms of carbon (such as graphite) are stiffer than highly aliphatic forms of carbon (such as wax).
Labile kerogen breaks down to generate principally liquid hydrocarbons (i.e., oil), refractory kerogen breaks down to generate principally gaseous hydrocarbons, and inert kerogen generates no hydrocarbons but forms graphite.
In organic petrography, the different components of kerogen can be identified by microscopic inspection and are classified as macerals. This classification was developed originally for coal (a sedimentary rock that is rich in organic matter of terrestrial origin) but is now applied to the study of other kerogen-rich sedimentary deposits.
The Van Krevelen diagram is one method of classifying kerogen by "types", where kerogens form distinct groups when the ratios of hydrogen to carbon and oxygen to carbon are compared. [34]
Type I kerogens are characterized by high initial hydrogen-to-carbon (H/C) ratios and low initial oxygen-to-carbon (O/C) ratios. This kerogen is rich in lipid-derived material and is commonly, but not always, from algal organic matter in lacustrine (freshwater) environments. On a mass basis, rocks containing type I kerogen yield the largest quantity of hydrocarbons upon pyrolysis. Hence, from the theoretical view, shales containing type I kerogen are the most promising deposits in terms of conventional oil retorting. [35]
Type II kerogens are characterized by intermediate initial H/C ratios and intermediate initial O/C ratios. Type II kerogen is principally derived from marine organic materials, which are deposited in reducing sedimentary environments. The sulfur content of type II kerogen is generally higher than in other kerogen types, and sulfur is found in substantial amounts in the associated bitumen. Although pyrolysis of type II kerogen yields less oil than type I, the amount yielded is still sufficient for type II-bearing sedimentary deposits to be petroleum source rocks.
Similar to type II but with high sulfur content.
Type III kerogens are characterized by low initial H/C ratios and high initial O/C ratios. Type III kerogens are derived from terrestrial plant matter, specifically from precursor compounds including cellulose, lignin (a non-carbohydrate polymer formed from phenyl-propane units that binds the strings of cellulose together); terpenes and phenols. Coal is an organic-rich sedimentary rock that is composed predominantly of this kerogen type. On a mass basis, type III kerogens generate the lowest oil yield of principal kerogen types.
Type IV kerogen comprises mostly inert organic matter in the form of polycyclic aromatic hydrocarbons. They have no potential to produce hydrocarbons. [37]
The diagram on the right shows the organic carbon cycle with the flow of kerogen (black solid lines) and the flow of biospheric carbon (green solid lines), showing both the fixation of atmospheric CO2 by terrestrial and marine primary productivity. The combined flux of reworked kerogen and biospheric carbon into ocean sediments constitutes total organic carbon burial entering the endogenous kerogen pool. [38] [39]
Carbonaceous chondrite meteorites contain kerogen-like components. [40] Such material is thought to have formed the terrestrial planets. Kerogenous materials have been detected also in interstellar clouds and dust around stars. [41]
The Curiosity rover has detected organic deposits similar to kerogen in mudstone samples in Gale Crater on Mars using a revised drilling technique. The presence of benzene and propane also indicates the possible presence of kerogen-like materials, from which hydrocarbons are derived. [42] [43] [44] [45] [46] [47] [48] [49] [50]
In organic chemistry, hydrocarbons are divided into two classes: aromatic compounds and aliphatic compounds. Aliphatic compounds can be saturated like hexane, or unsaturated, like hexene and hexyne. Open-chain compounds, whether straight or branched, and which contain no rings of any type, are always aliphatic. Cyclic compounds can be aliphatic if they are not aromatic.
Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen from which liquid hydrocarbons can be produced. In addition to kerogen, general composition of oil shales constitutes inorganic substance and bitumens. Based on their deposition environment, oil shales are classified as marine, lacustrine and terrestrial oil shales. Oil shales differ from oil-bearing shales, shale deposits that contain petroleum that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation. Accordingly, shale oil produced from oil shale should not be confused with tight oil, which is also frequently called shale oil.
Petroleum geology is the study of the origins, occurrence, movement, accumulation, and exploration of hydrocarbon fuels. It refers to the specific set of geological disciplines that are applied to the search for hydrocarbons.
Catagenesis is a term used in petroleum geology to describe the cracking process which results in the conversion of organic kerogens into hydrocarbons.
Vitrinite is one of the primary components of coals and most sedimentary kerogens. Vitrinite is a type of maceral, where "macerals" are organic components of coal analogous to the "minerals" of rocks. Vitrinite has a shiny appearance resembling glass (vitreous). It is derived from the cell-wall material or woody tissue of the plants from which coal was formed. Chemically, it is composed of polymers, cellulose and lignin.
A maceral is a component, organic in origin, of coal or oil shale. The term 'maceral' in reference to coal is analogous to the use of the term 'mineral' in reference to igneous or metamorphic rocks. Examples of macerals are inertinite, vitrinite, and liptinite.
The abiogenic petroleum origin hypothesis proposes that most of earth's petroleum and natural gas deposits were formed inorganically, commonly known as abiotic oil. Scientific evidence overwhelmingly supports a biogenic origin for most of the world's petroleum deposits. Mainstream theories about the formation of hydrocarbons on earth point to an origin from the decomposition of long-dead organisms, though the existence of hydrocarbons on extraterrestrial bodies like Saturn's moon Titan indicates that hydrocarbons are sometimes naturally produced by inorganic means. A historical overview of theories of the abiogenic origins of hydrocarbons has been published.
Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil can be used immediately as a fuel or upgraded to meet refinery feedstock specifications by adding hydrogen and removing impurities such as sulfur and nitrogen. The refined products can be used for the same purposes as those derived from crude oil.
Petroleum geochemistry is a branch of geochemistry which deals specifically with petroleum and its origin, generation, and accumulation, as well as its extraction, refinement, and use. Petroleum, also known as crude oil, is a solid, liquid, and/or gaesous mix of hydrocarbons. These hydrocarbons are from the burial and metamorphosis of organic matter from millions of years ago; the organic matter is from marine animals, plants, and algae. Petroleum is extracted from the Earth, refined, and used as an energy source.
Organic-rich sedimentary rocks are a specific type of sedimentary rock that contains significant amounts (>3%) of organic carbon. The most common types include coal, lignite, oil shale, or black shale. The organic material may be disseminated throughout the rock giving it a uniform dark color, and/or it may be present as discrete occurrences of tar, bitumen, asphalt, petroleum, coal or carbonaceous material. Organic-rich sedimentary rocks may act as source rocks which generate hydrocarbons that accumulate in other sedimentary "reservoir" rocks. Potential source rocks are any type of sedimentary rock that the ability to dispel available carbon from within it. Good reservoir rocks are any sedimentary rock that has high pore-space availability. This allows the hydrocarbons to accumulate within the rock and be stored for long periods of time. Highly permeable reservoir rocks are also of interest to industry professionals, as they allow for the easy extraction of the hydrocarbons within. The hydrocarbon reservoir system is not complete however without a "cap rock". Cap rocks are rock units which have very low porosity and permeability, which trap the hydrocarbons within the units below as they try to migrate upwards.
Asphaltenes are molecular substances that are found in crude oil, along with resins, aromatic hydrocarbons, and saturates. The word "asphaltene" was coined by Boussingault in 1837 when he noticed that the distillation residue of some bitumens had asphalt-like properties. Asphaltenes in the form of asphalt or bitumen products from oil refineries are used as paving materials on roads, shingles for roofs, and waterproof coatings on building foundations.
γ-Carotene (gamma-carotene) is a carotenoid, and is a biosynthetic intermediate for cyclized carotenoid synthesis in plants. It is formed from cyclization of lycopene by lycopene cyclase epsilon. Along with several other carotenoids, γ-carotene is a vitamer of vitamin A in herbivores and omnivores. Carotenoids with a cyclized, beta-ionone ring can be converted to vitamin A, also known as retinol, by the enzyme beta-carotene 15,15'-dioxygenase; however, the bioconversion of γ-carotene to retinol has not been well-characterized. γ-Carotene has tentatively been identified as a biomarker for green and purple sulfur bacteria in a sample from the 1.640 ± 0.003-Gyr-old Barney Creek Formation in Northern Australia which comprises marine sediments. Tentative discovery of γ-carotene in marine sediments implies a past euxinic environment, where water columns were anoxic and sulfidic. This is significant for reconstructing past oceanic conditions, but so far γ-carotene has only been potentially identified in the one measured sample.
Oil shale geology is a branch of geologic sciences which studies the formation and composition of oil shales–fine-grained sedimentary rocks containing significant amounts of kerogen, and belonging to the group of sapropel fuels. Oil shale formation takes place in a number of depositional settings and has considerable compositional variation. Oil shales can be classified by their composition or by their depositional environment. Much of the organic matter in oil shales is of algal origin, but may also include remains of vascular land plants. Three major type of organic matter (macerals) in oil shale are telalginite, lamalginite, and bituminite. Some oil shale deposits also contain metals which include vanadium, zinc, copper, and uranium.
The Bend Arch–Fort Worth Basin Province is a major petroleum producing geological system which is primarily located in North Central Texas and southwestern Oklahoma. It is officially designated by the United States Geological Survey (USGS) as Province 045 and classified as the Barnett-Paleozoic Total Petroleum System (TPS).
In petroleum geology, source rock is rock which has generated hydrocarbons or which could generate hydrocarbons. Source rocks are one of the necessary elements of a working petroleum system. They are organic-rich sediments that may have been deposited in a variety of environments including deep water marine, lacustrine and deltaic. Oil shale can be regarded as an organic-rich but immature source rock from which little or no oil has been generated and expelled. Subsurface source rock mapping methodologies make it possible to identify likely zones of petroleum occurrence in sedimentary basins as well as shale gas plays.
The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.
Pyrobitumen is a type of solid, amorphous organic matter. Pyrobitumen is mostly insoluble in carbon disulfide and other organic solvents as a result of molecular cross-linking, which renders previously soluble organic matter insoluble. Not all solid bitumens are pyrobitumens, in that some solid bitumens are soluble in common organic solvents, including CS
2, dichloromethane, and benzene-methanol mixtures.
Hydrogen isotope biogeochemistry (HIBGC) is the scientific study of biological, geological, and chemical processes in the environment using the distribution and relative abundance of hydrogen isotopes. Hydrogen has two stable isotopes, protium 1H and deuterium 2H, which vary in relative abundance on the order of hundreds of permil. The ratio between these two species can be called the hydrogen isotopic signature of a substance. Understanding isotopic fingerprints and the sources of fractionation that lead to variation between them can be applied to address a diverse array of questions ranging from ecology and hydrology to geochemistry and paleoclimate reconstructions. Since specialized techniques are required to measure natural hydrogen isotopic composition (HIC), HIBGC provides uniquely specialized tools to more traditional fields like ecology and geochemistry.
Bituminite is an autochthonous maceral that is a part of the liptinite group in lignite, that occurs in petroleum source rocks originating from organic matter such as algae which has undergone alteration or degradation from natural processes such as burial. It occurs as fine-grained groundmass, laminae or elongated structures that appear as veinlets within horizontal sections of lignite and bituminous coals, and also occurs in sedimentary rocks. Its occurrence in sedimentary rocks is typically found surrounding alginite, and parallel along bedding planes. Bituminite is not considered to be bitumen because its properties are different from most bitumens. It is described to have no definite shape or form when present in bedding and can be identified using different kinds of visible and fluorescent lights. There are three types of bituminite: type I, type II and type III, of which type I is the most common. The presence of bituminite in oil shales, other oil source rocks and some coals plays an important factor when determining potential petroleum-source rocks.
Lycopane (C40H82; 2,6,10,14,19,23,27,31-octamethyldotriacontane), a 40 carbon alkane isoprenoid, is a widely present biomarker that is often found in anoxic settings. It has been identified in anoxically deposited lacustrine sediments (such as the Messel formation and the Condor oil shale deposit). It has been found in sulfidic and anoxic hypersaline environments (such as the Sdom Formation). It has been widely identified in modern marine sediments, including the Peru upwelling zone, the Black Sea, and the Cariaco Trench. It has been found only rarely in crude oils.
{{cite book}}
: CS1 maint: bot: original URL status unknown (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)Helgeson, H.C.et al. (2009). "A chemical and thermodynamic model of oil generation in hydrocarbon source rocks". Geochim. Cosmochim. Acta. 73, 594–695. [1]
Marakushev, S.A.; Belonogova, O.V. (2021), "An inorganic origin of the “oil-source” rocks carbon substance". Georesursy = Georesources. 23, 164–176. [2]