Carbonate compensation depth

Last updated

The carbonate compensation depth (CCD) is the depth, in the oceans, at which the rate of supply of calcium carbonates matches the rate of solvation. That is, solvation 'compensates' supply. Below the CCD solvation is faster, so that carbonate particles dissolve and the carbonate shells (tests) of animals are not preserved. Carbonate particles cannot accumulate in the sediments where the sea floor is below this depth.

Contents

Calcite is the least soluble of these carbonates, so the CCD is normally the compensation depth for calcite. The aragonite compensation depth (ACD) is the compensation depth for aragonitic carbonates. Aragonite is more soluble than calcite, and the aragonite compensation depth is generally shallower than both the calcite compensation depth and the CCD.

Overview

Carbonate compensation concept Carbonate compensation concept.png
Carbonate compensation concept
Calcareous sediment can only accumulate in depths shallower than the calcium carbonate compensation depth (CCD). Below the CCD, calcareous sediments dissolve and will not accumulate. The lysocline represents the depth range in which the rate of dissolution increases dramatically. Calcareous sediment in the ocean.png
Calcareous sediment can only accumulate in depths shallower than the calcium carbonate compensation depth (CCD). Below the CCD, calcareous sediments dissolve and will not accumulate. The lysocline represents the depth range in which the rate of dissolution increases dramatically.

As shown in the diagram, biogenic calcium carbonate (CaCO3) tests are produced in the photic zone of the oceans (green circles). Upon death, those tests escaping dissolution near the surface settle, along with clay materials. In seawater, a dissolution boundary is formed as a result of temperature, pressure, and depth, and is known as the saturation horizon. [3] Above this horizon, waters are supersaturated and CaCO3 tests are largely preserved. Below it, waters are undersaturated, because of both the increasing solubility with depth and the release of CO2 from organic matter decay, and CaCO3 will dissolve. The sinking velocity of debris is rapid (broad pale arrows), so dissolution occurs primarily at the sediment surface.

At the carbonate compensation depth, the rate of dissolution exactly matches the rate of supply of CaCO3 from above. At steady state this depth, the CCD, is similar to the snowline (the first depth where carbonate-poor sediments occur). The lysocline is the depth interval between the saturation and carbonate compensation depths. [4] [1]

Solubility of carbonate

Calcium carbonate is essentially insoluble in sea surface waters today. Shells of dead calcareous plankton sinking to deeper waters are practically unaltered until reaching the lysocline, the point about 3.5 km deep past which the solubility increases dramatically with depth and pressure. By the time the CCD is reached[ clarification needed ] all calcium carbonate has dissolved according to this equation:

Calcareous plankton and sediment particles can be found in the water column above the CCD. If the sea bed is above the CCD, bottom sediments can consist of calcareous sediments called calcareous ooze, which is essentially a type of limestone or chalk. If the exposed sea bed is below the CCD tiny shells of CaCO3 will dissolve before reaching this level, preventing deposition of carbonate sediment. As the sea floor spreads, thermal subsidence of the plate, which has the effect of increasing depth, may bring the carbonate layer below the CCD; the carbonate layer may be prevented from chemically interacting with the sea water by overlying sediments such as a layer of siliceous ooze or abyssal clay deposited on top of the carbonate layer. [5]

Variations in value of the CCD

The exact value of the CCD depends on the solubility of calcium carbonate which is determined by temperature, pressure and the chemical composition of the water – in particular the amount of dissolved CO2 in the water. Calcium carbonate is more soluble at lower temperatures and at higher pressures. It is also more soluble if the concentration of dissolved CO2 is higher. Adding a reactant to the above chemical equation pushes the equilibrium towards the right producing more products: Ca2+ and HCO3, and consuming more reactants CO2 and calcium carbonate according to Le Chatelier's principle.

At the present time the CCD in the Pacific Ocean is about 4200–4500 metres except beneath the equatorial upwelling zone, where the CCD is about 5000 m. In the temperate and tropical Atlantic Ocean the CCD is at approximately 5000 m. In the Indian Ocean it is intermediate between the Atlantic and the Pacific at approximately 4300 meters. The variation in the depth of the CCD largely results from the length of time since the bottom water has been exposed to the surface; this is called the "age" of the water mass. Thermohaline circulation determines the relative ages of the water in these basins. Because organic material, such as fecal pellets from copepods, sink from the surface waters into deeper water, deep water masses tend to accumulate dissolved carbon dioxide as they age. The oldest water masses have the highest concentrations of CO2 and therefore the shallowest CCD. The CCD is relatively shallow in high latitudes with the exception of the North Atlantic and regions of Southern Ocean where downwelling occurs. This downwelling brings young, surface water with relatively low concentrations of carbon dioxide into the deep ocean, depressing the CCD.

In the geological past the depth of the CCD has shown significant variation. In the Cretaceous through to the Eocene the CCD was much shallower globally than it is today; due to intense volcanic activity during this period atmospheric CO2 concentrations were much higher. Higher concentrations of CO2 resulted in a higher partial pressure of CO2 over the ocean. This greater pressure of atmospheric CO2 leads to increased dissolved CO2 in the ocean mixed surface layer. This effect was somewhat moderated by the deep oceans' elevated temperatures during this period. [6] In the late Eocene the transition from a greenhouse to an icehouse Earth coincided with a deepened CCD.

John Murray investigated and experimented on the dissolution of calcium carbonate and was first to identify the carbonate compensation depth in oceans. [7]

Climate change impacts

Increasing atmospheric concentration of CO2 from combustion of fossil fuels are causing the CCD to rise, with zones of downwelling first being affected. [8] Ocean acidification, which is also caused by increasing carbon dioxide concentrations in the atmosphere, will increase such dissolution and shallow the carbonate compensation depth on timescales of tens to hundreds of years. [9]

Sedimentary ooze

On the sea floors above the carbonate compensation depth, the most commonly found ooze is calcareous ooze; on the sea floors below the carbonate compensation depth, the most commonly found ooze is siliceous ooze. While calcareous ooze mostly consists of Rhizaria, siliceous ooze mostly consists of Radiolaria and diatoms. [10] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Carbonate</span> Salt or ester of carbonic acid

A carbonate is a salt of carbonic acid, H2CO3, characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate groupO=C(−O−)2.

<span class="mw-page-title-main">Limestone</span> Type of sedimentary rock

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Calcite</span> Calcium carbonate mineral

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skeletons and pearls. Materials containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is produced when calcium ions in hard water react with carbonate ions to form limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

<span class="mw-page-title-main">Lysocline</span> Depth in the ocean below which the rate of dissolution of calcite increases dramatically

The lysocline is the depth in the ocean dependent upon the carbonate compensation depth (CCD), usually around 5 km, below which the rate of dissolution of calcite increases dramatically because of a pressure effect. While the lysocline is the upper bound of this transition zone of calcite saturation, the CCD is the lower bound of this zone.

<span class="mw-page-title-main">Aragonite</span> Calcium carbonate mineral

Aragonite is a carbonate mineral and one of the three most common naturally occurring crystal forms of calcium carbonate, the others being calcite and vaterite. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

<span class="mw-page-title-main">Speleothem</span> Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

<span class="mw-page-title-main">Limescale</span> Hard, chalky deposit of calcium carbonate

Limescale is a hard, chalky deposit, consisting mainly of calcium carbonate (CaCO3). It often builds up inside kettles, boilers, and pipework, especially that for hot water. It is also often found as a similar deposit on the inner surfaces of old pipes and other surfaces where hard water has flowed. Limescale also forms as travertine or tufa in hard water springs.

Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO3)2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca2+), bicarbonate (HCO
3
), and carbonate (CO2−
3
) ions, together with dissolved carbon dioxide (CO2). The relative concentrations of these carbon-containing species depend on the pH; bicarbonate predominates within the range 6.36–10.25 in fresh water.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

<span class="mw-page-title-main">Calcareous</span> Adjective meaning mostly or partly composed of calcium carbonate

Calcareous is an adjective meaning "mostly or partly composed of calcium carbonate", in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines.

<span class="mw-page-title-main">Marine sediment</span> Accumulated material on seafloor

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles either have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea, or they are biogenic deposits from marine organisms or from chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

<span class="mw-page-title-main">Calcite sea</span> Sea chemistry favouring low-magnesium calcite as the inorganic calcium carbonate precipitate

A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic are characterized by aragonite seas.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

<span class="mw-page-title-main">Shell growth in estuaries</span>

Shell growth in estuaries is an aspect of marine biology that has attracted a number of scientific research studies. Many groups of marine organisms produce calcified exoskeletons, commonly known as shells, hard calcium carbonate structures which the organisms rely on for various specialized structural and defensive purposes. The rate at which these shells form is greatly influenced by physical and chemical characteristics of the water in which these organisms live. Estuaries are dynamic habitats which expose their inhabitants to a wide array of rapidly changing physical conditions, exaggerating the differences in physical and chemical properties of the water.

Oilfield scale inhibition is the process of preventing the formation of scale from blocking or hindering fluid flow through pipelines, valves, and pumps used in oil production and processing. Scale inhibitors (SIs) are a class of specialty chemicals that are used to slow or prevent scaling in water systems. Oilfield scaling is the precipitation and accumulation of insoluble crystals (salts) from a mixture of incompatible aqueous phases in oil processing systems. Scale is a common term in the oil industry used to describe solid deposits that grow over time, blocking and hindering fluid flow through pipelines, valves, pumps etc. with significant reduction in production rates and equipment damages. Scaling represents a major challenge for flow assurance in the oil and gas industry. Examples of oilfield scales are calcium carbonate (limescale), iron sulfides, barium sulfate and strontium sulfate. Scale inhibition encompasses the processes or techniques employed to treat scaling problems.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification is the production of calcium carbonate by organisms in the global ocean.

Automicrite is autochthonous micrite, that is, a carbonate mud precipitated in situ and made up of fine-grained calcite or aragonite micron-sized crystals. It precipitates on the sea floor or within the sediment as an authigenic mud thanks to physicochemical, microbial, photosynthetic and biochemical processes. It has peculiar fabrics and uniform mineralogical and chemical composition.

<span class="mw-page-title-main">Particulate inorganic carbon</span>

Particulate inorganic carbon (PIC) can be contrasted with dissolved inorganic carbon (DIC), the other form of inorganic carbon found in the ocean. These distinctions are important in chemical oceanography. Particulate inorganic carbon is sometimes called suspended inorganic carbon. In operational terms, it is defined as the inorganic carbon in particulate form that is too large to pass through the filter used to separate dissolved inorganic carbon.

Biogenous ooze is marine sediment that accumulates on the seafloor and is a byproduct of the death and sink of the skeletal remains of marine organisms.

References

  1. 1 2 Middelburg, Jack J. (2019). "Biogeochemical Processes and Inorganic Carbon Dynamics". Marine Carbon Biogeochemistry. SpringerBriefs in Earth System Sciences. pp. 77–105. doi:10.1007/978-3-030-10822-9_5. ISBN   978-3-030-10821-2. S2CID   104368944. CC-BY icon.svg Modified material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  2. Webb, Paul (2019) Introduction to Oceanography, Chapter 12: Ocean Sediments, page 273–297, Rebus Community. Updated 2020. CC-BY icon.svg Modified text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  3. "Ocean acidification due to increasing atmospheric carbon dioxide". The Royal Society.
  4. Boudreau, Bernard P.; Middelburg, Jack J.; Luo, Yiming (2018). "The role of calcification in carbonate compensation". Nature Geoscience. 11 (12): 894–900. Bibcode:2018NatGe..11..894B. doi:10.1038/s41561-018-0259-5. S2CID   135284130.
  5. Thurman, Harold., Alan Trujillo. Introductory Oceanography.2004.p151-152
  6. "Warmer than a Hot Tub: Atlantic Ocean Temperatures Much Higher in the Past". Physorg.com. February 17, 2006.
  7. Berger, Wolfgang H.; et al. (2016). "Calcite Compensation Depth (CCD)". Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer Netherlands. pp. 71–73. doi:10.1007/978-94-007-6238-1_47. ISBN   978-94-007-6238-1.
  8. Sulpis, Olivier; et al. (October 29, 2018). "Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2". Proceedings of the National Academy of Sciences of the United States of America. 115 (46): 11700–11705. Bibcode:2018PNAS..11511700S. doi: 10.1073/pnas.1804250115 . PMC   6243283 . PMID   30373837.
  9. Boudreau, Bernard P.; Middelburg, Jack J.; Hofmann, Andreas F.; Meysman, Filip J. R. (2010). "Ongoing transients in carbonate compensation: COMPENSATION TRANSIENTS". Global Biogeochemical Cycles. 24 (4): n/a. doi: 10.1029/2009GB003654 . S2CID   53062358.
  10. Johnson, Thomas C.; Hamilton, Edwin L.; Berger, Wolfgang H. (1977-08-01). "Physical properties of calcareous ooze: Control by dissolution at depth". Marine Geology. 24 (4): 259–277. Bibcode:1977MGeol..24..259J. doi:10.1016/0025-3227(77)90071-8. ISSN   0025-3227.
  11. Webb, Paul (August 2023). "12.6 Sediment Distribution". Introduction to Oceanography. Retrieved 3 July 2024 via Roger Williams University.