Carbon-to-nitrogen ratio

Last updated

A carbon-to-nitrogen ratio (C/N ratio or C:N ratio) is a ratio of the mass of carbon to the mass of nitrogen in organic residues. It can, amongst other things, be used in analysing sediments and soil including soil organic matter and soil amendments such as compost.

Contents

Sediments

In the analysis of sediments, C/N ratios are a proxy for paleoclimate research, having different uses whether the sediment cores are terrestrial-based or marine-based. Carbon-to-nitrogen ratios are an indicator for nitrogen limitation of plants and other organisms and can identify whether molecules found in the sediment under study come from land-based or algal plants. [1] Further, they can distinguish between different land-based plants, depending on the type of photosynthesis they undergo. Therefore, the C/N ratio serves as a tool for understanding the sources of sedimentary organic matter, which can lead to information about the ecology, climate, and ocean circulation at different times in Earth's history. [1]

Ranges

C/N ratios in the range 4-10:1 are usually from marine sources, whereas higher ratios are likely to come from a terrestrial source. [2] [3] Vascular plants from terrestrial sources tend to have C/N ratios greater than 20. [1] [4] The lack of cellulose, which has a chemical formula of (C6H10O5)n, and greater amount of proteins in algae versus vascular plants causes this significant difference in the C/N ratio. [1] [5] [6]

Instruments

Example of devices that can be used to measure this ratio are the CHN analyzer and the continuous-flow isotope ratio mass spectrometer (CF-IRMS). [7] However, for more practical applications, desired C/N ratios can be achieved by blending common used substrates of known C/N content, which are readily available and easy to use.

By sediment type

Marine

Organic matter that is deposited in marine sediments contains a key indicator as to its source and the processes it underwent before reaching the floor as well as after deposition, its carbon to nitrogen ratio. [8] [9] [10] [4] In the global oceans, freshly produced algae in the surface ocean typically have a carbon to nitrogen ratio of about 4 to 10. [9] However, it has been observed that only 10% of this organic matter (algae) produced in the surface ocean sinks to the deep ocean without being degraded by bacteria in transit, and only about 1% is permanently buried in the sediment. An important process called sediment diagenesis accounts for the other 9% of organic carbon that sank to the deep ocean floor, but was not permanently buried, that is 9% of the total organic carbon produced is degraded in the deep ocean. [11] The microbial communities utilizing the sinking organic carbon as an energy source, are partial to nitrogen-rich compounds because much of these bacterium are nitrogen-limited and much prefer it over carbon. As a result, the carbon to nitrogen ratio of sinking organic carbon in the deep ocean is elevated compared to fresh surface ocean organic matter that had not been degraded. An exponential increase in C/N ratios is observed with increasing water depth—with C/N ratios reaching 10 at intermediate water depths of about 1000 meters, and up to 15 in the deep ocean (deeper than about 2500 meters) [ citation needed ]. This elevated C/N signature is preserved in the sediment, until another form of diagenesis, post-depositional diagenesis, alters its C/N signature once again. [6] Post-depositional diagenesis occurs in organic-carbon-poor marine sediments where bacteria are able to oxidize organic matter in aerobic conditions as an energy source. The oxidation reaction proceeds as follows: CH2O + H2O → CO2 + 4H+ + 4e, with a standard free energy of –27.4 kJ mol−1 (half reaction). [11] Once all of the oxygen is used up, bacteria are able to carry out an anoxic sequence of chemical reactions as an energy source, all with negative ∆G°r values, with the reaction becoming less favorable as the chain of reactions proceeds. [11]

The same principle described above explaining the preferential degradation of nitrogen-rich organic matter occurs within the sediments, as they are more labile and are in higher demand. This principle has been utilized in paleoceanographic studies in order to identify core sites that have not experienced much microbial activity, or contamination by terrestrial sources with much higher C/N ratios. [12]

Lastly, ammonia, the product of the second reduction reaction, which reduces nitrate and produces nitrogen gas and ammonia, is easily adsorbed on clay mineral surfaces and protected from bacteria. This has been proposed as an explanation for lower than expected C/N signatures of organic carbon in sediments that have undergone post-depositional diagenesis. [6]

Ammonium produced from the remineralisation of organic material, exists in elevated concentrations (1 - >14μM) within cohesive shelf sea sediments found in the Celtic Sea (depth: 1–30 cm). The depth of sediment exceeds 1m and would be a suitable study site to carry out paleolimnology experiments with C:N.

Lacustrine

Unlike in marine sediments, diagenesis does not pose a large threat to the integrity of the C/N ratio in lacustrine sediments. [1] [13] Though wood from living trees around lakes have consistently higher C/N ratios than wood buried in sediment, the change in elemental composition is not large enough to remove the vascular versus non-vascular plant signals due to the refractory nature of terrestrial organic matter. [1] [14] [13] Abrupt shifts in the C/N ratio down-core can be interpreted as shifts in the organic source material.

For example, two separate studies on Mangrove Lake, Bermuda and Lake Yunoko, Japan show irregular, abrupt fluctuations between C/N around 11 to around 18. These fluctuations are attributed to shifts from mainly algal dominance to land-based vascular dominance. [13] [15] Results of studies that show abrupt shifts in algal dominance and vascular dominance often lead to conclusions about the state of the lake during these distinct periods of isotopic signatures. Times in which lakes are dominated by algal signals suggest the lake is a deep-water lake, while times in which lakes are dominated by vascular plant signals suggest the lake is shallow, dry, or marshy. [13] Using the C/N ratio in conjunction with other sediment observations, such as physical variations, D/H isotopic analyses of fatty acids and alkanes, and δ13C analyses on similar biomarkers can lead to further regional climate interpretations that describe the larger phenomena at play.

Soil

In microbial communities like soil, the C:N ratio is a key indicator as it describes a balance between energetic foods (represented by carbon) and material to build protein with (represented by nitrogen). An optimal C:N ratio of around 24:1 provides for higher microbial activity. [16] [17]

The C:N ratio of soil can be modified by the addition of materials such as compost, manure, and mulch. A feedstock with a near-optimal C:N ratio will be consumed quickly. Any excess C will cause the N originally in the soil to be consumed, competing with the plant for nutrients (immobilization) at least temporarily until the microbes die. Any excess N, on the other hand, will usually just be left behind (mineralization), but too much excess may result in losses to leaching. The recommended C:N ratio for soil materials is therefore 30:1. A soil test may be done to find the C:N ratio of soil itself. [16]

The C:N ratio of microbes themselves is generally around 10:1. [16] A lower ratio is correlated with higher soil productivity. [18]

Compost

The role of C:N ratio in compost feedstock is similar to that of soil feedstock. The recommendation is around 20-30:1. The microbes prefer a ratio of 30-35:1, [4] but the carbon is usually not completely digested (especially in the case of lignin feedstock), hence the lowered ratio. [19]

An imbalance of C:N ratio causes a slowdown in the composting process and a drop in temperature. When the C:N ratio is less than 15:1, outgassing of ammonium may occur, creating odor and losing nitrogen. [20] A finished compost has a C:N ratio of around 10:1. [19]

Estimating C and N contents of feedstocks

The C and N contents of feedstocks is generally known from lookup tables listing common types of feedstock. It is important to deduct the moisture content if the listed value is for dry material. [19]

For foodstuffs with a nutrition analysis, the N content may be estimated from the protein content as prot% × 0.16, reversing the crude protein calculation. [21] The C content may be estimated from crude ash content (often reported in animal feed) [19] or from reported macronutrient levels as carbs% × 0.44 + fat% × 0.86 + prot% × 0.53. [22]

Given the C:N ratio and one of C and N contents, the other content may be calculated using the very definition of the ratio. [19] When only the ratio is known, one must estimate the total C+N% or one of the contents to get both values.

Managing mixed feedstocks

The C:N ratio of mixed feedstocks is calculated by summing their C and N amounts together and dividing the two results. For compost, moisture is also an important factor. [19]

Related Research Articles

Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope-ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

<span class="mw-page-title-main">Paleolimnology</span> Scientific study of ancient lakes and streams

Paleolimnology is a scientific sub-discipline closely related to both limnology and paleoecology. Paleolimnological studies focus on reconstructing the past environments of inland waters using the geologic record, especially with regard to events such as climatic change, eutrophication, acidification, and internal ontogenic processes.

<span class="mw-page-title-main">Cholestane</span> Chemical compound

Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.

γ-Carotene (gamma-carotene) is a carotenoid, and is a biosynthetic intermediate for cyclized carotenoid synthesis in plants. It is formed from cyclization of lycopene by lycopene cyclase epsilon. Along with several other carotenoids, γ-carotene is a vitamer of vitamin A in herbivores and omnivores. Carotenoids with a cyclized, beta-ionone ring can be converted to vitamin A, also known as retinol, by the enzyme beta-carotene 15,15'-dioxygenase; however, the bioconversion of γ-carotene to retinol has not been well-characterized. γ-Carotene has tentatively been identified as a biomarker for green and purple sulfur bacteria in a sample from the 1.640 ± 0.003-Gyr-old Barney Creek Formation in Northern Australia which comprises marine sediments. Tentative discovery of γ-carotene in marine sediments implies a past euxinic environment, where water columns were anoxic and sulfidic. This is significant for reconstructing past oceanic conditions, but so far γ-carotene has only been potentially identified in the one measured sample.

<i>δ</i><sup>13</sup>C Measure of relative carbon-13 concentration in a sample

In geochemistry, paleoclimatology, and paleoceanography δ13C is an isotopic signature, a measure of the ratio of the two stable isotopes of carbon—13C and 12C—reported in parts per thousand. The measure is also widely used in archaeology for the reconstruction of past diets, particularly to see if marine foods or certain types of plants were consumed.

<span class="mw-page-title-main">Isorenieratene</span> Chemical compound

Isorenieratene /ˌaɪsoʊrəˈnɪərətiːn/ is a carotenoid light harvesting pigment produced exclusively by the genus Chlorobium. Chlorobium are the brown-colored strains of the family of green sulfur bacteria (Chlorobiaceae). Green sulfur bacteria are anaerobic photoautotrophic organisms meaning they perform photosynthesis in the absence of oxygen using hydrogen sulfide in the following reaction:

<span class="mw-page-title-main">Abietane</span> Chemical compound

Abietane is a diterpene that forms the structural basis for a variety of natural chemical compounds such as abietic acid, carnosic acid, and ferruginol which are collectively known as abietanes or abietane diterpenes.

<span class="mw-page-title-main">Dinosterol</span> Chemical compound

Dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) is a 4α-methyl sterol that is produced by several genera of dinoflagellates and is rarely found in other classes of protists. The steroidal alkane, dinosterane, is the 'molecular fossil' of dinosterol, meaning that dinosterane has the same carbon skeleton as dinosterol, but lacks dinosterol's hydroxyl group and olefin functionality. As such, dinosterane is often used as a biomarker to identify the presence of dinoflagelletes in sediments.

<span class="mw-page-title-main">Timothy Eglinton</span>

Timothy Ian Eglinton is a professor of biogeoscience at the Geological Institute, ETH Zürich.

Hydrogen isotope biogeochemistry is the scientific study of biological, geological, and chemical processes in the environment using the distribution and relative abundance of hydrogen isotopes. There are two stable isotopes of hydrogen, protium 1H and deuterium 2H, which vary in relative abundance on the order of hundreds of permil. The ratio between these two species can be considered the hydrogen isotopic fingerprint of a substance. Understanding isotopic fingerprints and the sources of fractionation that lead to variation between them can be applied to address a diverse array of questions ranging from ecology and hydrology to geochemistry and paleoclimate reconstructions. Since specialized techniques are required to measure natural hydrogen isotope abundance ratios, the field of hydrogen isotope biogeochemistry provides uniquely specialized tools to more traditional fields like ecology and geochemistry.

Okenane, the diagenetic end product of okenone, is a biomarker for Chromatiaceae, the purple sulfur bacteria. These anoxygenic phototrophs use light for energy and sulfide as their electron donor and sulfur source. Discovery of okenane in marine sediments implies a past euxinic environment, where water columns were anoxic and sulfidic. This is potentially tremendously important for reconstructing past oceanic conditions, but so far okenane has only been identified in one Paleoproterozoic rock sample from Northern Australia.

Carbonate-associated sulfates (CAS) are sulfate species found in association with carbonate minerals, either as inclusions, adsorbed phases, or in distorted sites within the carbonate mineral lattice. It is derived primarily from dissolved sulfate in the solution from which the carbonate precipitates. In the ocean, the source of this sulfate is a combination of riverine and atmospheric inputs, as well as the products of marine hydrothermal reactions and biomass remineralisation. CAS is a common component of most carbonate rocks, having concentrations in the parts per thousand within biogenic carbonates and parts per million within abiogenic carbonates. Through its abundance and sulfur isotope composition, it provides a valuable record of the global sulfur cycle across time and space.

<span class="mw-page-title-main">Microbial oxidation of sulfur</span>

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

<span class="mw-page-title-main">Silica cycle</span> Biogeochemical cycle

The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant overlap with the carbon cycle and plays an important role in the sequestration of carbon through continental weathering, biogenic export and burial as oozes on geologic timescales.

Ruth E. Blake is an American geochemist and environmental scientist. She is a professor at Yale University in earth & planetary sciences, environmental studies, and chemical & environmental engineering. Blake's work focuses on marine biogeochemical processes, paleoclimate, astrobiology, and stable isotope geochemistry.

Sulfur isotope biogeochemistry is the study of the distribution of sulfur isotopes in biological and geological materials. In addition to its common isotope, 32S, sulfur has three rare stable isotopes: 34S, 36S, and 33S. The distribution of these isotopes in the environment is controlled by many biochemical and physical processes, including biological metabolisms, mineral formation processes, and atmospheric chemistry. Measuring the abundance of sulfur stable isotopes in natural materials, like bacterial cultures, minerals, or seawater, can reveal information about these processes both in the modern environment and over Earth history.

<span class="mw-page-title-main">Lycopane</span> Chemical compound

Lycopane (C40H82; 2,6,10,14,19,23,27,31-octamethyldotriacontane), a 40 carbon alkane isoprenoid, is a widely present biomarker that is often found in anoxic settings. It has been identified in anoxically deposited lacustrine sediments (such as the Messel formation and the Condor oil shale deposit). It has been found in sulfidic and anoxic hypersaline environments (such as the Sdom Formation). It has been widely identified in modern marine sediments, including the Peru upwelling zone, the Black Sea, and the Cariaco Trench. It has been found only rarely in crude oils.

Elizabeth A. Canuel is a chemical oceanographer known for her work on organic carbon cycling in aquatic environments. She is the Chancellor Professor of Marine Science at the College of William & Mary and is an elected fellow of the Geochemical Society and the European Association of Geochemistry.

Maureen Hatcher Conte is biogeochemist known for her work using particles to define the long-term cycling of chemical compounds in seawater.

<span class="mw-page-title-main">Silicon isotope biogeochemistry</span> The study of environmental processes using the relative abundance of Si isotopes

Silicon isotope biogeochemistry is the study of environmental processes using the relative abundance of Si isotopes. As the relative abundance of Si stable isotopes varies among different natural materials, the differences in abundance can be used to trace the source of Si, and to study biological, geological, and chemical processes. The study of stable isotope biogeochemistry of Si aims to quantify the different Si fluxes in the global biogeochemical silicon cycle, to understand the role of biogenic silica within the global Si cycle, and to investigate the applications and limitations of the sedimentary Si record as an environmental and palaeoceanographic proxy.

References

  1. 1 2 3 4 5 6 Ishiwatari, R.; M. Uzaki (1987). "Diagenetic Changes of Lignin Compounds in a More Than 0.6 Million-Year-Old Lacustrine Sediment (Lake Biwa, Japan)". Geochimica et Cosmochimica Acta. 51 (2): 321–28. Bibcode:1987GeCoA..51..321I. doi:10.1016/0016-7037(87)90244-4.
  2. Gray KR, Biddlestone AJ. 1973. Composting - process parameters. The Chemical Engineer. Feb. pp 71-76
  3. Stewart, Keith (2006). It's A Long Road to A Tomato. New York: Marlowe & Company. p. 155. ISBN   978-1-56924-330-5.
  4. 1 2 3 Prahl, F. G., J. R. Ertel, M. A. Goni, M. A. Sparrow, and B. Eversmeyer (1994). "Terrestrial Organic-Carbon Contributions to Sediments on the Washington Margin". Geochimica et Cosmochimica Acta. 58 (14): 3035–48. Bibcode:1994GeCoA..58.3035P. CiteSeerX   10.1.1.175.9020 . doi:10.1016/0016-7037(94)90177-5.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Zahn, R.; Comas, M.C.; Klaus, A., eds. (February 1999). "Sources, preservation, and thermal maturity of organic matter in Pliocene-Pleistocene organic-carbon-rich sediments of the western Mediterranean Sea". Proceedings of the Ocean Drilling Program, 161 Scientific Results. Vol. 161. Ocean Drilling Program. doi:10.2973/odp.proc.sr.161.235.1999.
  6. 1 2 3 Müller, P.J (June 1977). "CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays". Geochimica et Cosmochimica Acta. 41 (6): 765–776. Bibcode:1977GeCoA..41..765M. doi:10.1016/0016-7037(77)90047-3.
  7. Brenna, J. T.; Corso, T. N.; Tobias, H. J.; Caimi, R. J. (September 1997). "High-precision continuous-flow isotope ratio mass spectrometry". Mass Spectrometry Reviews. 16 (5): 227–258. Bibcode:1997MSRv...16..227B. doi:10.1002/(SICI)1098-2787(1997)16:5<227::AID-MAS1>3.0.CO;2-J. PMID   9538528.
  8. Jasper, John P.; Gagosian, Robert B. (April 1990). "The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico". Geochimica et Cosmochimica Acta. 54 (4): 1117–1132. Bibcode:1990GeCoA..54.1117J. doi:10.1016/0016-7037(90)90443-O.
  9. 1 2 Meyers, Philip A. (June 1994). "Preservation of elemental and isotopic source identification of sedimentary organic matter". Chemical Geology. 114 (3–4): 289–302. Bibcode:1994ChGeo.114..289M. doi:10.1016/0009-2541(94)90059-0. hdl: 2027.42/31544 .
  10. Dahlem. "Flux to the Seafloor", Group Report, eds. K.W. Bruland et al., pp. 210–213, 1988.
  11. 1 2 3 Emerson, S.; Hedges, J. (2003), "Sediment Diagenesis and Benthic Flux", Treatise on Geochemistry, 6, Elsevier: 293–319, Bibcode:2003TrGeo...6..293E, doi:10.1016/b0-08-043751-6/06112-0, ISBN   978-0-08-043751-4
  12. Raymo, M.E.; Grant, B.; Horowitz, M.; Rau, G.H. (April 1996). "Mid-Pliocene warmth: stronger greenhouse and stronger conveyor". Marine Micropaleontology. 27 (1–4): 313–326. Bibcode:1996MarMP..27..313R. doi:10.1016/0377-8398(95)00048-8.
  13. 1 2 3 4 Meyers, Philip A., and Ryoshi Ishiwatari (1993). "Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments" (PDF). Organic Geochemistry. 20 (7): 867–900. Bibcode:1993OrGeo..20..867M. doi:10.1016/0146-6380(93)90100-P. hdl: 2027.42/30617 . S2CID   36874753.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Meyers, Philip A. (June 1994). "Preservation of elemental and isotopic source identification of sedimentary organic matter". Chemical Geology. 114 (3–4): 289–302. Bibcode:1994ChGeo.114..289M. doi:10.1016/0009-2541(94)90059-0. hdl: 2027.42/31544 .
  15. Ishiwatari, Ryoshi; Takamatsu, Nobuki; Ishibashi, Tomoko (1977). "Separation of Autochthonous and Allochthonous Materials in Lacustrine Sediments by Density Differences". Japanese Journal of Limnology (in Japanese). 38 (3): 94–99. doi: 10.3739/rikusui.38.94 . ISSN   0021-5104.
  16. 1 2 3 "Carbon to Nitrogen Ratios in Cropping Systems" (PDF). USDA Natural Resources Conservation Service.
  17. "Carbon to Nitrogen Ratio (C:N)". Soil Health Nexus.
  18. Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao (December 2016). "Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields". Scientific Reports. 6 (1): 35266. Bibcode:2016NatSR...635266L. doi:10.1038/srep35266. PMC   5064311 . PMID   27739462.
  19. 1 2 3 4 5 6 "C/N Ratio". CORNELL Composting.
  20. Haug, Roger (1993). The Practical Handbook of Compost Engineering. CRC Press. ISBN   9780873713733. Archived from the original on 13 July 2021. Retrieved 16 October 2020.
  21. D. Julian McClements. "Analysis of Proteins". University of Massachusetts Amherst . Retrieved 27 April 2007.
  22. Rouwenhorst, R. J.; Jzn, J. F.; Scheffers, W. A.; van Dijken, J. P. (Feb–Mar 1991). "Determination of protein concentration by total organic carbon analysis". Journal of Biochemical and Biophysical Methods. 22 (2): 119–128. doi:10.1016/0165-022x(91)90024-q. PMID   2061559.