Soil organic matter

Last updated

Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous benefits to the physical and chemical properties of soil and its capacity to provide regulatory ecosystem services. [1] SOM is especially critical for soil functions and quality. [2]

Contents

The benefits of SOM result from a number of complex, interactive, edaphic factors; a non-exhaustive list of these benefits to soil function includes improvement of soil structure, aggregation, water retention, soil biodiversity, absorption and retention of pollutants, buffering capacity, and the cycling and storage of plant nutrients. SOM increases soil fertility by providing cation exchange sites and being a reserve of plant nutrients, especially nitrogen (N), phosphorus (P), and sulfur (S), along with micronutrients, which the mineralization of SOM slowly releases. As such, the amount of SOM and soil fertility are significantly correlated. [3]

SOM also acts as a major sink and source of soil carbon (C). Although the C content of SOM varies considerably, [4] [5] SOM is ordinarily estimated to contain 58% C, and "soil organic carbon" (SOC) is often used as a synonym for SOM, with measured SOC content often serving as a proxy for SOM. Soil represents one of the largest C sinks on Earth and is significant in the global carbon cycle and therefore for climate change mitigation. [6] Therefore, SOM/SOC dynamics and the capacity of soils to provide the ecosystem service of carbon sequestration through SOM management have received considerable attention. [7]

The concentration of SOM in soils generally ranges from 1% to 6% of the total mass of topsoil for most upland soils. Soils whose upper horizons consist of less than 1% of organic matter are mostly limited to deserts, while the SOM content of soils in low lying, wet areas can be as great as 90%. Soils containing 12% to 18% SOC are generally classified as organic soils. [8]

SOM can be divided into 3 genera: the living biomass of microbes, fresh and partially decomposed detritus, and humus. Surface plant litter, i. e., fresh vegetal detritus, is generally excluded from SOM. [9]

Sources

The primary source of SOM is vegetal detritus. In forests and prairies, for example, different organisms decompose the fresh detritus into simpler compounds. This involves several stages, the first being mostly mechanical, and becoming more chemical as decomposition progresses. The microbial decomposers are included in the SOM, and form a food web of organisms that prey upon each other and subsequently become prey.

Above detritivores there are also herbivores that consume fresh vegetal matter, the residue of which then passes to the soil. The products of the metabolisms of these organisms are the secondary sources of SOM, which also includes their corpses. Some animals, like earthworms, termites, ants, and millipedes contribute to both vertical and horizontal translocation of organic matter. [1]

Additional sources of SOM include plant root exudates [10] and charcoal. [11]

Composition

The water content of most vegetal detritus is in the range of 60% to 90%. The dry matter consists of complex organic matter that is composed primarily of carbon, oxygen, and hydrogen. Although these three elements make up about 92% of the dry weight of the organic matter in soil, other elements are very important for the nutrition of plants, including nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and many micronutrients. [1]

Organic compounds in vegetal detritus include:

Decomposition

Vegetal detritus in general is not soluble in water and therefore is inaccessible to plants. It constitutes, nevertheless, the raw matter from which plant nutrients derive. Soil microbes decompose it through enzymatic biochemical processes, obtain the necessary energy from the same matter, and produce the mineral compounds that plant roots are apt to absorb. [12] The decomposition of organic compounds specifically into mineral, i. e., inorganic, compounds is denominated "mineralization". A portion of organic matter is not mineralized and instead decomposed into stable organic matter that is denominated "humus". [1]

The decomposition of organic compounds occurs at very different rates, depending on the nature of the compound. The ranking, from fast to slow rates, is:

  1. Sugars, starches, and simple proteins
  2. Proteins
  3. Hemicelluloses
  4. Cellulose
  5. Lignins and fats

The reactions that occur can be included in one of 3 genera:

The mineral products are:

ElementMineral Products
CarbonCO2, CO32−, HCO3, CH4, C
NitrogenNH4+, NO2, NO3, N2 (gas), N2O (gas)
SulfurS, H2S, SO32−, SO42−, CS2
PhosphorusH2PO4, HPO42−
OthersH2O, O2, H2, H+, OH, K+, Ca2+, Mg2+, etc.

Humus

As vegetal detritus decomposes, some microbially resistant compounds are formed, including modified lignins, oils, fats, and waxes. Secondly, some new compounds are synthesized, like polysaccharides and polyuronids. These compounds are the basis of humus. New reactions occur between these compounds and some proteins and other products that contain nitrogen, thus incorporating nitrogen and avoiding its mineralization. Other nutrients are also protected in this way from mineralization.

Humic substances

Humic substances are classified into 3 genera based on their solubility in acids and alkalis, and also according to their stability:

Function in carbon cycling

Soil has a crucial function in the global carbon cycle, with the global soil carbon pool estimated to be 2,500 gigatons. This is 3.3 times the amount of the atmospheric pool at 750 gigatons and 4.5 times the biotic pool at 560 gigatons. The pool of organic carbon, which occurs primarily in the form of SOM, accounts for approximately 1,550 gigatons of the total global carbon pool, [13] [14] with soil inorganic carbon (SIC) accounting for the remainder. The pool of organic carbon exists in dynamic equilibrium between gains and losses; soil may therefore serve as either a sink or source of carbon, through sequestration or greenhouse gas emissions, respectively, depending on exogenous factors. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.

<span class="mw-page-title-main">Humus</span> Organic matter in soils resulting from decay of plant and animal materials

In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground".

<span class="mw-page-title-main">Soil</span> Mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.

Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors.

<span class="mw-page-title-main">Decomposition</span> Process in which organic substances are broken down into simpler organic matter

Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as worms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere, biosphere, lithosphere and the hydrosphere. The pedosphere is the foundation of terrestrial life on Earth.

Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

<span class="mw-page-title-main">Dissolved organic carbon</span> Organic carbon classification

Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC).

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

Soil chemistry is the study of the chemical characteristics of soil. Soil chemistry is affected by mineral composition, organic matter and environmental factors. In the early 1870s a consulting chemist to the Royal Agricultural Society in England, named J. Thomas Way, performed many experiments on how soils exchange ions, and is considered the father of soil chemistry. Other scientists who contributed to this branch of ecology include Edmund Ruffin, and Linus Pauling.

<span class="mw-page-title-main">Immobilization (soil science)</span>

Immobilization in soil science is the conversion of inorganic compounds to organic compounds by microorganisms or plants by which the compounds become inaccessible to plants. Immobilization is the opposite of mineralization. In immobilization, inorganic nutrients are taken up by soil microbes and become unavailable for plant uptake. Immobilization is therefore a biological process controlled by bacteria that consume inorganic nitrogen and form amino acids and biological macromolecules. Immobilization and mineralization are continuous processes that occur concurrently whereby nitrogen of the decomposing system is steadily transformed from an inorganic to an organic state by immobilization and from an organic to an inorganic state by decay and mineralization.

Mineralization in soil science is the decomposition of the chemical compounds in organic matter, by which the nutrients in those compounds are released in soluble inorganic forms that may be available to plants. Mineralization is the opposite of immobilization.

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

<span class="mw-page-title-main">Soil respiration</span> Chemical process produced by soil and the organisms within it

Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.

Decomposition in animals is a process that begins immediately after death and involves the destruction of soft tissue, leaving behind skeletonized remains. The chemical process of decomposition is complex and involves the breakdown of soft tissue, as the body passes through the sequential stages of decomposition. Autolysis and putrefaction also play major roles in the disintegration of cells and tissues.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

Priming or a "priming effect" is said to occur when something that is added to soil or compost affects the rate of decomposition occurring on the soil organic matter (SOM), either positively or negatively. Organic matter is made up mostly of carbon and nitrogen, so adding a substrate containing certain ratios of these nutrients to soil may affect the microbes that are mineralizing SOM. Fertilizers, plant litter, detritus, and carbohydrate exudates from living roots, can potentially positively or negatively prime SOM decomposition.

The soil matrix is the solid phase of soils, and comprise the solid particles that make up soils. Soil particles can be classified by their chemical composition (mineralogy) as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, but the mineralogy of those particles can strongly modify those properties. The mineralogy of the finest soil particles, clay, is especially important.

Seventeen elements or nutrients are essential for plant growth and reproduction. They are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo), nickel (Ni) and chlorine (Cl). Nutrients required for plants to complete their life cycle are considered essential nutrients. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential, although some of them, such as silicon (Si), have been shown to improve nutrent availability, hence the use of stinging nettle and horsetail macerations in Biodynamic agriculture. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The Law of the Minimum expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.

<span class="mw-page-title-main">Mor humus</span> Humus formed in coniferous forests

Mor humus is a form of forest floor humus occurring mostly in coniferous forests. Mor humus consists of evergreen needles and woody debris that litter the forest floor. This litter is slow to decompose, in part due to their chemical composition, but also because of the generally cool and wet conditions where mor humus is found. This results in low bacterial activity and an absence of earthworms and other soil fauna. Because of this, most of the organic matter decomposition in mor humus is carried out by fungi.

References

  1. 1 2 3 4 5 6 7 Weil, Ray R.; Brady, Nyle C. (2016). The nature and properties of soils (15th ed.). Upper Saddle River, New Jersey: Pearson. ISBN   978-0133254488 . Retrieved 17 December 2023.
  2. Beare, Mike H.; Cabrera, Miguel L.; Hendrix, Paul F.; Coleman, David C. (1994). "Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils". Soil Science Society of America Journal . 58 (3): 787–95. doi:10.2136/sssaj1994.03615995005800030021x . Retrieved 17 December 2023.
  3. Tiessen, Holm; Cuevas, Elvira; Chacón, Prudencio (1994). "The role of soil organic matter in sustaining soil fertility" (PDF). Nature . 371: 783–85. doi:10.1038/371783a0 . Retrieved 17 December 2023.
  4. Périé, Catherine; Ouimet, Rock (2008). "Organic carbon, organic matter and bulk density relationships in boreal forest soils". Canadian Journal of Soil Science . 88 (3): 315–25. doi: 10.4141/CJSS06008 . Retrieved 24 December 2023.
  5. Jain, Terri; Graham, Russell T.; Adams, David L. (1997). "Carbon to organic matter ratios for soils in Rocky Mountain coniferous forests". Soil Science Society of America Journal . 61 (4): 1190–95. doi:10.2136/sssaj1997.03615995006100040026x . Retrieved 24 December 2023.
  6. "Restoring soils could remove up to '5.5bn tonnes' of greenhouse gases every year". Carbon Brief . London, United Kingdom. 2020-03-16. Retrieved 24 December 2023.
  7. Ontl, Todd A.; Schulte, Lisa A. (2012). "Soil carbon storage". The Nature Education Knowledge Project. Cambridge, Massachusetts. Retrieved 24 December 2023.
  8. "Organic matter in soil: overview of composition, distribution, and content". Ocean Agro LLC. Nandesari Vadodara, India. 2018. Retrieved 25 December 2023.
  9. Bot, Alexandra; Benites, José (2005). "The importance of soil organic matter: key to drought-resistant soil and sustained food production. Chapter 1. Introduction". Food and Agriculture Organization of the United Nations . Rome, Italy. Retrieved 25 December 2023.
  10. Mergel, A.; Timchenko, A.; Kudeyarov, V. (1998). "Role of plant root exudates in soil carbon and nitrogen transformation". In Box, James E. Jr. (ed.). Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Developments in plant and soil sciences. Vol. 82. Dordrecht, The Netherlands: Springer. pp. 43–54. doi:10.1007/978-94-011-5270-9_3. ISBN   978-94-010-6218-3 . Retrieved 31 December 2023.
  11. Skjemstad, Jan O.; Reicosky, Donald C.; Wilts, Alan R.; McGowan, Janine A. (2002). "Charcoal carbon in U.S. agricultural soils". Soil Science Society of America Journal . 66 (4): 1249–55. Bibcode:2002SSASJ..66.1249S. doi:10.2136/sssaj2002.1249 . Retrieved 31 December 2023.
  12. Ochoa-Hueso, R; Delgado-Baquerizo, M; King, PTA; Benham, M; Arca, V; Power, SA (February 2019). "Ecosystem Type and Resource Quality Are More Important than Global Change Drivers in Regulating Early Stages of Litter Decomposition". Soil Biology and Biochemistry. 129: 144–52. doi:10.1016/j.soilbio.2018.11.009. hdl: 10261/336676 . S2CID   92606851.
  13. Batjes, Niels H. (1996). "Total Carbon and Nitrogen in the Soils of the World". European Journal of Soil Science. 47 (2): 151–63. doi:10.1111/j.1365-2389.1996.tb01386.x.
  14. Batjes, Niels H. (2016). "Harmonised Soil Property Values for Broad-Scale Modelling (WISE30sec) with Estimates of Global Soil Carbon Stocks". Geoderma. 269: 61–68. Bibcode:2016Geode.269...61B. doi:10.1016/j.geoderma.2016.01.034.
  15. Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma, 123(1): 1–22 (2004).