Ecosystem services are the various benefits that humans derive from healthy ecosystems. These ecosystems, when functioning well, offer such things as provision of food, natural pollination of crops, clean air and water, decomposition of wastes, or flood control. Ecosystem services are grouped into four broad categories of services. There are provisioning services, such as the production of food and water. Regulating services, such as the control of climate and disease. Supporting services, such as nutrient cycles and oxygen production. And finally there are cultural services, such as spiritual and recreational benefits. [1] Evaluations of ecosystem services may include assigning an economic value to them.
For example, estuarine and coastal ecosystems are marine ecosystems that perform the four categories of ecosystem services in several ways. Firstly, their provisioning services include marine resources and genetic resources. Secondly, their supporting services include nutrient cycling and primary production. Thirdly, their regulating services include carbon sequestration (which helps with climate change mitigation) and flood control. Lastly, their cultural services include recreation and tourism.
The Millennium Ecosystem Assessment (MA) in the early 2000s has made this concept better known. [2]
Ecosystem services or eco-services are defined as the goods and services provided by ecosystems to humans. [3] Per the 2006 Millennium Ecosystem Assessment (MA), ecosystem services are "the benefits people obtain from ecosystems". The MA also delineated the four categories of ecosystem services into provisioning, regulating, supporting, and cultural. [2]
By 2010, there had evolved various working definitions and descriptions of ecosystem services in the literature. [4] To prevent double-counting in ecosystem services audits, for instance, The Economics of Ecosystems and Biodiversity (TEEB) replaced "Supporting Services" in the MA with "Habitat Services" and "ecosystem functions", defined as "a subset of the interactions between ecosystem structure and processes that underpin the capacity of an ecosystem to provide goods and services". [5]
While Gretchen Daily's original definition distinguished between ecosystem goods and ecosystem services, Robert Costanza and colleagues' later work and that of the Millennium Ecosystem Assessment lumped all of these together as ecosystem services. [6] [7]
Four different types of ecosystem services have been distinguished by the scientific body: regulating services, provisioning services, cultural services and supporting services. An ecosystem does not necessarily offer all four types of services simultaneously; but given the intricate nature of any ecosystem, it is usually assumed that humans benefit from a combination of these services. The services offered by diverse types of ecosystems (forests, seas, coral reefs, mangroves, etc.) differ in nature and in consequence. In fact, some services directly affect the livelihood of neighboring human populations (such as fresh water, food or aesthetic value, etc.) while other services affect general environmental conditions by which humans are indirectly impacted (such as climate change, erosion regulation or natural hazard regulation, etc.). [8]
The Millennium Ecosystem Assessment report 2005 defined ecosystem services as benefits people obtain from ecosystems and distinguishes four categories of ecosystem services, where the so-called supporting services are regarded as the basis for the services of the other three categories. [9]
Provisioning services consist of all "the products obtained from ecosystems". The following services are also known as ecosystem goods: [10]
Forests and forest management produce a large type and variety of timber products, including roundwood, sawnwood, panels, and engineered wood, e.g., cross-laminated timber, as well as pulp and paper. [11] Besides the production of timber, forestry activities may also result in products that undergo little processing, such as fire wood, charcoal, wood chips and roundwood used in an unprocessed form. [12] Global production and trade of all major wood-based products recorded their highest ever values in 2018. [13] Production, imports and exports of roundwood, sawnwood, wood-based panels, wood pulp, wood charcoal and pellets reached [14] their maximum quantities since 1947 when FAO started reporting global forest product statistics. [13] In 2018, growth in production of the main wood-based product groups ranged from 1 percent (woodbased panels) to 5 percent (industrial roundwood). [13] The fastest growth occurred in the Asia-Pacific, Northern American and European regions, likely due to positive economic growth in these areas. [13] Over 40% of the territory in the European Union is covered by forests. This region has grown via afforestation by roughly 0.4% year in recent decades. In the European Union, just 60% of the yearly forest growth is harvested. [15] [16] [17]
Forests also provide non-wood forest products, including fodder, aromatic and medicinal plants, and wild foods. Worldwide, around 1 billion people depend to some extent on wild foods such as wild meat, edible insects, edible plant products, mushrooms and fish, which often contain high levels of key micronutrients. [14] The value of forest foods as a nutritional resource is not limited to low- and middle-income countries; more than 100 million people in the European Union (EU) regularly consume wild food. [14] Some 2.4 billion people – in both urban and rural settings – use wood-based energy for cooking. [14]
Regulating services are the "benefits obtained from the regulation of ecosystem processes". [18] These include:
An example for water purification as an ecosystem service is as follows: In New York City, where the quality of drinking water had fallen below standards required by the U.S. Environmental Protection Agency (EPA), authorities opted to restore the polluted Catskill Watershed that had previously provided the city with the ecosystem service of water purification. Once the input of sewage and pesticides to the watershed area was reduced, natural abiotic processes such as soil absorption and filtration of chemicals, together with biotic recycling via root systems and soil microorganisms, water quality improved to levels that met government standards. The cost of this investment in natural capital was estimated at $1–1.5 billion, which contrasted dramatically with the estimated $6–8 billion cost of constructing a water filtration plant plus the $300 million annual running costs. [20]
Pollination of crops by bees is required for 15–30% of U.S. food production; most large-scale farmers import non-native honey bees to provide this service. A 2005 study [21] reported that in California's agricultural region, it was found that wild bees alone could provide partial or complete pollination services or enhance the services provided by honey bees through behavioral interactions. However, intensified agricultural practices can quickly erode pollination services through the loss of species. The remaining species are unable to compensate this. The results of this study also indicate that the proportion of chaparral and oak-woodland habitat available for wild bees within 1–2 km of a farm can stabilize and enhance the provision of pollination services. The presence of such ecosystem elements functions almost like an insurance policy for farmers.
Coastal and estuarine ecosystems act as buffer zones against natural hazards and environmental disturbances, such as floods, cyclones, tidal surges and storms. The role they play is to "[absorb] a portion of the impact and thus [lessen] its effect on the land". [22] Wetlands (which include saltwater swamps, salt marshes, ...) and the vegetation it supports – trees, root mats, etc. – retain large amounts of water (surface water, snowmelt, rain, groundwater) and then slowly releases them back, decreasing the likeliness of floods. [23] Mangrove forests protect coastal shorelines from tidal erosion or erosion by currents; a process that was studied after the 1999 cyclone that hit India. Villages that were surrounded with mangrove forests encountered less damages than other villages that were not protected by mangroves. [24]
Supporting services are the services that allow for the other ecosystem services to be present. They have indirect impacts on humans that last over a long period of time. Several services can be considered as being both supporting services and regulating/cultural/provisioning services. [25]
Supporting services include for example nutrient cycling, primary production, soil formation, habitat provision. These services make it possible for the ecosystems to continue providing services such as food supply, flood regulation, and water purification.
Nutrient cycling is the movement of nutrients through an ecosystem by biotic and abiotic processes. [26] The ocean is a vast storage pool for these nutrients, such as carbon, nitrogen and phosphorus. The nutrients are absorbed by the basic organisms of the marine food web and are thus transferred from one organism to the other and from one ecosystem to the other. Nutrients are recycled through the life cycle of organisms as they die and decompose, releasing the nutrients into the neighboring environment. "The service of nutrient cycling eventually impacts all other ecosystem services as all living things require a constant supply of nutrients to survive". [22]
Primary production refers to the production of organic matter, i.e., chemically bound energy, through processes such as photosynthesis and chemosynthesis. The organic matter produced by primary producers forms the basis of all food webs. Further, it generates oxygen (O2), a molecule necessary to sustain animals and humans. [27] [28] [29] [30] On average, a human consumes about 550 liter of oxygen per day, whereas plants produce 1,5 liter of oxygen per 10 grams of growth. [31]
Cultural services relate to the non-material world, as they benefit the benefit recreational, aesthetic, cognitive and spiritual activities, which are not easily quantifiable in monetary terms. [32] They include:
As of 2012, there was a discussion as to how the concept of cultural ecosystem services could be operationalized, how landscape aesthetics, cultural heritage, outdoor recreation, and spiritual significance to define can fit into the ecosystem services approach. [33] who vote for models that explicitly link ecological structures and functions with cultural values and benefits. Likewise, there has been a fundamental critique of the concept of cultural ecosystem services that builds on three arguments: [34]
The Common International Classification of Ecosystem Services (CICES) is a classification scheme developed to accounting systems (like National counts etc.), in order to avoid double-counting of Supporting Services with others Provisioning and Regulating Services. [37]
Sea sports are very popular among coastal populations: surfing, snorkeling, whale watching, kayaking, recreational fishing ... a lot of tourists also travel to resorts close to the sea or rivers or lakes to be able to experience these activities, and relax near the water. [38] The United Nations Sustainable Development Goal 14 also has targets aimed at enhancing the use of ecosystem services for sustainable tourism especially in Small Island Developing States. [39]
Estuarine and marine coastal ecosystems are both marine ecosystems. Together, these ecosystems perform the four categories of ecosystem services in a variety of ways: The provisioning services include forest products, marine products, fresh water, raw materials, biochemical and genetic resources. Regulating services include carbon sequestration (contributing to climate change mitigation) as well as waste treatment and disease regulation and buffer zones. Supporting services of coastal ecosystems include nutrient cycling, biologically mediated habitats and primary production. Cultural services of coastal ecosystems include inspirational aspects, recreation and tourism, science and education.
Coasts and their adjacent areas on and offshore are an important part of a local ecosystem. The mixture of fresh water and salt water (brackish water) in estuaries provides many nutrients for marine life. Salt marshes, mangroves and beaches also support a diversity of plants, animals and insects crucial to the food chain. The high level of biodiversity creates a high level of biological activity, which has attracted human activity for thousands of years. Coasts also create essential material for organisms to live by, including estuaries, wetland, seagrass, coral reefs, and mangroves. Coasts provide habitats for migratory birds, sea turtles, marine mammals, and coral reefs. [40]
There are questions regarding the environmental and economic values of ecosystem services. [41] Some people may be unaware of the environment in general and humanity's interrelatedness with the natural environment, which may cause misconceptions. Although environmental awareness is rapidly improving in our contemporary world, ecosystem capital and its flow are still poorly understood, threats continue to impose, and we suffer from the so-called 'tragedy of the commons'. [42] Many efforts to inform decision-makers of current versus future costs and benefits now involve organizing and translating scientific knowledge to economics, which articulate the consequences of our choices in comparable units of impact on human well-being. [7] An especially challenging aspect of this process is that interpreting ecological information collected from one spatial-temporal scale does not necessarily mean it can be applied at another; understanding the dynamics of ecological processes relative to ecosystem services is essential in aiding economic decisions. [43] Weighting factors such as a service's irreplaceability or bundled services can also allocate economic value such that goal attainment becomes more efficient.
The economic valuation of ecosystem services also involves social communication and information, areas that remain particularly challenging and are the focus of many researchers. [44] In general, the idea is that although individuals make decisions for any variety of reasons, trends reveal the aggregated preferences of a society, from which the economic value of services can be inferred and assigned. The six major methods for valuing ecosystem services in monetary terms are: [45]
A peer-reviewed study published in 1997 estimated the value of the world's ecosystem services and natural capital to be between US$16 and $54 trillion per year, with an average of US$33 trillion per year. [46] However, Salles (2011) indicated 'The total value of biodiversity is infinite, so having debate about what is the total value of nature is actually pointless because we can't live without it'. [47]
As of 2012, many companies were not fully aware of the extent of their dependence and impact on ecosystems and the possible ramifications. Likewise, environmental management systems and environmental due diligence tools are more suited to handle "traditional" issues of pollution and natural resource consumption. Most focus on environmental impacts, not dependence. Several tools and methodologies can help the private sector value and assess ecosystem services, including Our Ecosystem, [48] the 2008 Corporate Ecosystem Services Review, [49] the Artificial Intelligence for Environment & Sustainability (ARIES) project from 2007, [50] the Natural Value Initiative (2012) [51] and InVEST (Integrated Valuation of Ecosystem Services & Tradeoffs, 2012) [52]
To provide an example of a cost comparison: The land of the United States Department of Defense is said to provide substantial ecosystem services to local communities, including benefits to carbon storage, resiliency to climate, and endangered species habitat. [53] [54] As of 2020, the Eglin Air Force Base is said to provide about $110 million in ecosystem services per year, $40 million more than if no base was present. [53]
Although monetary pricing continues with respect to the valuation of ecosystem services, the challenges in policy implementation and management are significant and considerable. The administration of common pool resources has been a subject of extensive academic pursuit. [56] [57] [58] [59] [60] From defining the problems to finding solutions that can be applied in practical and sustainable ways, there is much to overcome. Considering options must balance present and future human needs, and decision-makers must frequently work from valid but incomplete information. Existing legal policies are often considered insufficient since they typically pertain to human health-based standards that are mismatched with necessary means to protect ecosystem health and services. In 2000, to improve the information available, the implementation of an Ecosystem Services Framework has been suggested (ESF [61] ), which integrates the biophysical and socio-economic dimensions of protecting the environment and is designed to guide institutions through multidisciplinary information and jargon, helping to direct strategic choices.
As of 2005 Local to regional collective management efforts were considered appropriate for services like crop pollination or resources like water. [21] [56] Another approach that has become increasingly popular during the 1990s is the marketing of ecosystem services protection. Payment and trading of services is an emerging worldwide small-scale solution where one can acquire credits for activities such as sponsoring the protection of carbon sequestration sources or the restoration of ecosystem service providers. In some cases, banks for handling such credits have been established and conservation companies have even gone public on stock exchanges, defining an evermore parallel link with economic endeavors and opportunities for tying into social perceptions. [7] However, crucial for implementation are clearly defined land rights, which are often lacking in many developing countries. [62] In particular, many forest-rich developing countries suffering deforestation experience conflict between different forest stakeholders. [62] In addition, concerns for such global transactions include inconsistent compensation for services or resources sacrificed elsewhere and misconceived warrants for irresponsible use. As of 2001, another approach focused on protecting ecosystem service biodiversity hotspots. Recognition that the conservation of many ecosystem services aligns with more traditional conservation goals (i.e. biodiversity) has led to the suggested merging of objectives for maximizing their mutual success. This may be particularly strategic when employing networks that permit the flow of services across landscapes, and might also facilitate securing the financial means to protect services through a diversification of investors. [63] [64]
For example, as of 2013, there had been interest in the valuation of ecosystem services provided by shellfish production and restoration. [65] A keystone species, low in the food chain, bivalve shellfish such as oysters support a complex community of species by performing a number of functions essential to the diverse array of species that surround them. There is also increasing recognition that some shellfish species may impact or control many ecological processes; so much so that they are included on the list of "ecosystem engineers"—organisms that physically, biologically or chemically modify the environment around them in ways that influence the health of other organisms. [66] Many of the ecological functions and processes performed or affected by shellfish contribute to human well-being by providing a stream of valuable ecosystem services over time by filtering out particulate materials and potentially mitigating water quality issues by controlling excess nutrients in the water. As of 2018, the concept of ecosystem services had not been properly implemented into international and regional legislation yet. [67]
Notwithstanding, the United Nations Sustainable Development Goal 15 has a target to ensure the conservation, restoration, and sustainable use of ecosystem services. [68]
An estimated $125 trillion to $140 trillion is added to the economy each year by all ecosystem services. [69] [70] [71] However, many of these services are at risk due to climate and other anthropogenic impacts. Climate-driven shifts in biome ranges is expected to cause a 9% decline in ecosystem services on average at global scale by 2100 [72]
Ecosystem-based adaptation (EBA or EbA) encompasses a broad set of approaches to adapt to climate change. They all involve the management of ecosystems and their services to reduce the vulnerability of human communities to the impacts of climate change. The Convention on Biological Diversity (CBD) defines EBA as "the use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change". [73] [74]
EbA involves the conservation, sustainable management and restoration of ecosystems, such as forests, grasslands, wetlands, mangroves or coral reefs to reduce the harmful impacts of climate hazards including shifting patterns or levels of rainfall, changes in maximum and minimum temperatures, stronger storms, and increasingly variable climatic conditions. EbA measures can be implemented on their own or in combination with engineered approaches (such as the construction of water reservoirs or dykes), hybrid measures (such as artificial reefs) and approaches that strengthen the capacities of individuals and institutions to address climate risks (such as the introduction of early warning systems).Ecosystem services decisions require making complex choices at the intersection of ecology, technology, society, and the economy. The process of making ecosystem services decisions must consider the interaction of many types of information, honor all stakeholder viewpoints, including regulatory agencies, proposal proponents, decision makers, residents, NGOs, and measure the impacts on all four parts of the intersection. These decisions are usually spatial, always multi-objective, and based on uncertain data, models, and estimates. Often it is the combination of the best science combined with the stakeholder values, estimates and opinions that drive the process. [75]
One analytical study modeled the stakeholders as agents to support water resource management decisions in the Middle Rio Grande basin of New Mexico. This study focused on modeling the stakeholder inputs across a spatial decision, but ignored uncertainty. [76] Another study used Monte Carlo methods to exercise econometric models of landowner decisions in a study of the effects of land-use change. Here the stakeholder inputs were modeled as random effects to reflect the uncertainty. [77] A third study used a Bayesian decision support system to both model the uncertainty in the scientific information Bayes Nets and to assist collecting and fusing the input from stakeholders. This study was about siting wave energy devices off the Oregon Coast, but presents a general method for managing uncertain spatial science and stakeholder information in a decision making environment. [78] Remote sensing data and analyses can be used to assess the health and extent of land cover classes that provide ecosystem services, which aids in planning, management, monitoring of stakeholders' actions, and communication between stakeholders. [79]
In Baltic countries scientists, nature conservationists and local authorities are implementing integrated planning approach for grassland ecosystems. [80] They are developing an integrated planning tool based on GIS (geographic information system) technology and put online that will help for planners to choose the best grassland management solution for concrete grassland. It will look holistically at the processes in the countryside and help to find best grassland management solutions by taking into account both natural and socioeconomic factors of the particular site. [81]
While the notion of human dependence on Earth's ecosystems reaches to the start of Homo sapiens ' existence, the term 'natural capital' was first coined by E. F. Schumacher in 1973 in his book Small is Beautiful . [82] Recognition of how ecosystems could provide complex services to humankind date back to at least Plato (c. 400 BC) who understood that deforestation could lead to soil erosion and the drying of springs. [83] [84] Modern ideas of ecosystem services probably began when Marsh challenged in 1864 the idea that Earth's natural resources are unbounded by pointing out changes in soil fertility in the Mediterranean. [85] [ page needed ] It was not until the late 1940s that three key authors—Henry Fairfield Osborn, Jr, [86] William Vogt, [87] and Aldo Leopold [88] —promoted recognition of human dependence on the environment.
In 1956, Paul Sears drew attention to the critical role of the ecosystem in processing wastes and recycling nutrients. [89] In 1970, Paul Ehrlich and Rosa Weigert called attention to "ecological systems" in their environmental science textbook [90] and "the most subtle and dangerous threat to man's existence ... the potential destruction, by man's own activities, of those ecological systems upon which the very existence of the human species depends".
The term environmental services was introduced in a 1970 report of the Study of Critical Environmental Problems, [91] which listed services including insect pollination, fisheries, climate regulation and flood control. In following years, variations of the term were used, but eventually 'ecosystem services' became the standard in scientific literature. [92]
The ecosystem services concept has continued to expand and includes socio-economic and conservation objectives. [83]
Biodiversity is the variety and variability of life on Earth. It can be measured on various levels. There is for example genetic variability, species diversity, ecosystem diversity and phylogenetic diversity. Diversity is not distributed evenly on Earth. It is greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than one-fifth of Earth's terrestrial area and contain about 50% of the world's species. There are latitudinal gradients in species diversity for both marine and terrestrial taxa.
Natural capital is the world's stock of natural resources, which includes geology, soils, air, water and all living organisms. Some natural capital assets provide people with free goods and services, often called ecosystem services. All of these underpin our economy and society, and thus make human life possible.
Forestry is the science and craft of creating, managing, planting, using, conserving and repairing forests and woodlands for associated resources for human and environmental benefits. Forestry is practiced in plantations and natural stands. The science of forestry has elements that belong to the biological, physical, social, political and managerial sciences. Forest management plays an essential role in the creation and modification of habitats and affects ecosystem services provisioning.
Biodiversity plays an essential role in the global economy. This includes its role in providing ecosystem services - the benefits that humans get from ecosystems. Biodiversity plays a major role in the productivity and functioning of ecosystems, affects their ability to provide ecosystem services. For example, biodiversity is a source of food, medication, and materials used in industry. Recreation and tourism are also examples of human economic activities that rely on these benefits. In 2018, the WWF Living Planet Report estimated that ecosystem services, underpinned by biodiversity, contributed US$125 trillion a year to the global economy.
A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally for a shorter periods. Flooding results in oxygen-poor (anoxic) processes taking place, especially in the soils. Wetlands form a transitional zone between waterbodies and dry lands, and are different from other terrestrial or aquatic ecosystems due to their vegetation's roots having adapted to oxygen-poor waterlogged soils. They are considered among the most biologically diverse of all ecosystems, serving as habitats to a wide range of aquatic and semi-aquatic plants and animals, with often improved water quality by the plants removing excess nutrients such as nitrates and phosphates.
Human ecology is an interdisciplinary and transdisciplinary study of the relationship between humans and their natural, social, and built environments. The philosophy and study of human ecology has a diffuse history with advancements in ecology, geography, sociology, psychology, anthropology, zoology, epidemiology, public health, and home economics, among others.
Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources. The use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource. The more a resource is depleted the more the value of the resource increases. There are several types of resource depletion, including but not limited to: mining for fossil fuels and minerals, deforestation, pollution or contamination of resources, wetland and ecosystem degradation, soil erosion, overconsumption, aquifer depletion, and the excessive or unnecessary use of resources. Resource depletion is most commonly used in reference to farming, fishing, mining, water usage, and the consumption of fossil fuels. Depletion of wildlife populations is called defaunation.
Ecological economics, bioeconomics, ecolonomy, eco-economics, or ecol-econ is both a transdisciplinary and an interdisciplinary field of academic research addressing the interdependence and coevolution of human economies and natural ecosystems, both intertemporally and spatially. By treating the economy as a subsystem of Earth's larger ecosystem, and by emphasizing the preservation of natural capital, the field of ecological economics is differentiated from environmental economics, which is the mainstream economic analysis of the environment. One survey of German economists found that ecological and environmental economics are different schools of economic thought, with ecological economists emphasizing strong sustainability and rejecting the proposition that physical (human-made) capital can substitute for natural capital.
Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business processes and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without causing damage to human or natural systems. It involves preventing adverse effects on soil, water, biodiversity, and surrounding or downstream resources, as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.
Environmental degradation is the deterioration of the environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. The environmental degradation process amplifies the impact of environmental issues which leave lasting impacts on the environment.
Ecosystem valuation is an economic process which assigns a value to an ecosystem and/or its ecosystem services. By quantifying, for example, the human welfare benefits of a forest to reduce flooding and erosion while sequestering carbon, providing habitat for endangered species, and absorbing harmful chemicals, such monetization ideally provides a tool for policy-makers and conservationists to evaluate management impacts and compare a cost-benefit analysis of potential policies. However, such valuations are estimates, and involve the inherent quantitative uncertainty and philosophical debate of evaluating a range non-market costs and benefits.
Habitat destruction occurs when a natural habitat is no longer able to support its native species. The organisms once living there have either moved to elsewhere or are dead, leading to a decrease in biodiversity and species numbers. Habitat destruction is in fact the leading cause of biodiversity loss and species extinction worldwide.
Forest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms in that area functioning together with all of the non-living physical (abiotic) factors of the environment.
Forest management is a branch of forestry concerned with overall administrative, legal, economic, and social aspects, as well as scientific and technical aspects, such as silviculture, forest protection, and forest regulation. This includes management for timber, aesthetics, recreation, urban values, water, wildlife, inland and nearshore fisheries, wood products, plant genetic resources, and other forest resource values. Management objectives can be for conservation, utilisation, or a mixture of the two. Techniques include timber extraction, planting and replanting of different species, building and maintenance of roads and pathways through forests, and preventing fire.
Ecosystem management is an approach to natural resource management that aims to ensure the long-term sustainability and persistence of an ecosystem's function and services while meeting socioeconomic, political, and cultural needs. Although indigenous communities have employed sustainable ecosystem management approaches implicitly for millennia, ecosystem management emerged explicitly as a formal concept in the 1990s from a growing appreciation of the complexity of ecosystems and of humans' reliance and influence on natural systems.
Akure Forest Reserve is a protected area in southwest Nigeria, covering 66 km2 (25 sq mi). The Akure Forest Reserve, established in 1948 and spanning approximately 32 hectares. It was created with the primary aim of safeguarding the genetic diversity of the forest ecosystem. About 11.73% (8.2 km2) is estimated to be cleared for cocoa farming and other food crops. Aponmu and Owena Yoruba speaking communities owned the forest, though, there are also minor settlements surrounding the forest. They include Ipogun, Kajola/ Aponmu, Kajola, Ago Petesi, Akika Camp, Owena Town, Ibutitan/Ilaro Camp, Elemo Igbara Oke Camp and Owena Water new Dam.
Forest restoration is defined as "actions to re-instate ecological processes, which accelerate recovery of forest structure, ecological functioning and biodiversity levels towards those typical of climax forest", i.e. the end-stage of natural forest succession. Climax forests are relatively stable ecosystems that have developed the maximum biomass, structural complexity and species diversity that are possible within the limits imposed by climate and soil and without continued disturbance from humans. Climax forest is therefore the target ecosystem, which defines the ultimate aim of forest restoration. Since climate is a major factor that determines climax forest composition, global climate change may result in changing restoration aims. Additionally, the potential impacts of climate change on restoration goals must be taken into account, as changes in temperature and precipitation patterns may alter the composition and distribution of climax forests.
Nature-based solutions describe the development and use of nature (biodiversity) and natural processes to address diverse socio-environmental issues. These issues include climate change mitigation and adaptation, human security issues such as water security and food security, and disaster risk reduction. The aim is that resilient ecosystems provide solutions for the benefit of both societies and biodiversity. The 2019 UN Climate Action Summit highlighted nature-based solutions as an effective method to combat climate change. For example, nature-based systems for climate change adaptation can include natural flood management, restoring natural coastal defences, and providing local cooling.
Nigeria has extensive mangrove forests in the coastal region of the Niger Delta. Considered one of the most ecologically sensitive regions in the world, the Niger Delta mangrove forest is situated within a deltaic depositional environment. These mangrove forests serve a critical role in regional ecological and landscape composition, and support subsistence gathering practices, and market-based income opportunities. Anthropogenic development threatens the survival of Niger Delta mangrove populations.
The Niger Delta swamp forests is a tropical moist forest ecoregion in southern Nigeria. It consists of freshwater swamp forests in the Niger Delta of the Niger River. This swamp forest is the second largest in Africa after the Congolian swamp forests. Although there are large cities just outside the ecoregion, the area has been relatively isolated by the difficulty of building roads across the swamps, although this is changing with development of oil and logging industries. Scientific surveys have only begun in recent years, and new species were being identified into the 1990s. Crude oil exploration and pollution has been a threat to forests in the Niger Delta region.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO( license statement/permission ). Text taken from The State of the World’s Forests 2020. Forests, biodiversity and people – In brief , FAO & UNEP, FAO & UNEP.
This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO( license statement/permission ). Text taken from Global Forest Resources Assessment 2020 – Key findings , FAO, FAO.