Water conservation

Last updated
United States 1960 postal stamp advocating water conservation. Water-conservation-stamp-1960.jpg
United States 1960 postal stamp advocating water conservation.

Water conservation includes all the policies, strategies and activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand. Population, household size, and growth and affluence all affect how much water is used. Factors such as climate change have increased pressures on natural water resources especially in manufacturing and agricultural irrigation. [1] Many US cities have already implemented policies aimed at water conservation, with much success. [2]

Natural resource Resources that exist without actions of humankind

Natural resources are resources that exist without actions of humankind. This includes all valued characteristics such as magnetic, gravitational, electrical properties and forces etc. On Earth it includes sunlight, atmosphere, water, land along with all vegetation, crops and animal life that naturally subsists upon or within the heretofore identified characteristics and substances.

Fresh water naturally occurring water with low concentrations of dissolved salts

Fresh water is any naturally occurring water except seawater and brackish water. Fresh water includes water in ice sheets, ice caps, glaciers, icebergs, bogs, ponds, lakes, rivers, streams, and even underground water called groundwater. Fresh water is generally characterized by having low concentrations of dissolved salts and other total dissolved solids. Though the term specifically excludes seawater and brackish water, it does include mineral-rich waters such as chalybeate springs.

Hydrosphere The combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite

The hydrosphere is the combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite. Although the Earth's hydrosphere has been around for longer than 4 billion years, it continues to change in size. This is caused by seafloor spreading and continental drift, which rearranges the land and ocean.

Contents

The goals of water conservation efforts include:

Water resources sources of water that are potentially useful

Water resources are natural resources of water that are potentially useful. Uses of water include agricultural, industrial, household, recreational and environmental activities. All living things require water to grow and reproduce.

Ecosystem A community of living organisms together with the nonliving components of their environment

An ecosystem is a community of living organisms in conjunction with the nonliving components of their environment, interacting as a system. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one-another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes.

Energy conservation reduction in energy usage

Energy conservation is the effort made to reduce the consumption of energy by using less of an energy service. This can be achieved either by using energy more efficiently or by reducing the amount of service used. Energy conservation is a part of the concept of eco-sufficiency. Energy conservation reduces the need for energy services and can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.

Wastewater treatment Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process used to remove contaminants from wastewater or sewage and convert it into an effluent that can be returned to the water cycle with minimum impact on the environment, or directly reused. The latter is called water reclamation because treated wastewater can then be used for other purposes. The treatment process takes place in a wastewater treatment plant (WWTP), often referred to as a Water Resource Recovery Facility (WRRF) or a sewage treatment plant. Pollutants in municipal wastewater are removed or broken down.

Habitat conservation

Habitat conservation is a management practice that seeks to conserve, protect and restore habitats and prevent species extinction, fragmentation or reduction in range. It is a priority of many groups that cannot be easily characterized in terms of any one ideology.

Water quality chemical, physical, biological, and radiological characteristics of water

Water quality refers to the chemical, physical, biological, and radiological characteristics of water. It is a measure of the condition of water relative to the requirements of one or more biotic species and or to any human need or purpose. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to assess water quality relate to health of ecosystems, safety of human contact, and drinking water.

Strategies

The key activities that benefit water conservation(save water) are as follows:

  1. Any beneficial reduction in water loss, use and waste of resources. [4]
  2. Avoiding any damage to water quality.
  3. Improving water management practices that reduce the use or enhance the beneficial use of water. [5] [6]

One strategy in water conservation is rain water harvesting. [7] Digging ponds, lakes, canals, expanding the water reservoir, and installing rain water catching ducts and filtration systems on homes are different methods of harvesting rain water. Many people in many countries keep clean containers so they can boil it and drink it, which is useful to supply water to the needy. [7] Harvested and filtered rain water can be used for toilets, home gardening, lawn irrigation, and small scale agriculture. [7]

Another strategy in water conservation is protecting groundwater resources. When precipitation occurs, some infiltrates the soil and goes underground. [8] Water in this saturation zone is called groundwater. [8] Contamination of groundwater causes the groundwater water supply to not be able to be used as a resource of fresh drinking water and the natural regeneration of contaminated groundwater can take years to replenish. [9] Some examples of potential sources of groundwater contamination include storage tanks, septic systems, uncontrolled hazardous waste, landfills, atmospheric contaminants, chemicals, and road salts. [9] Contamination of groundwater decreases the replenishment of available freshwater so taking preventative measures by protecting groundwater resources from contamination is an important aspect of water conservation. [7]

Groundwater water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from and eventually flows to the surface naturally; natural discharge often occurs at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Septic tank method for basic wastewater treatment (on-site)

A septic tank is an underground chamber made of concrete, fiberglass or plastic through which domestic wastewater (sewage) flows for basic treatment. Settling and anaerobic processes reduce solids and organics, but the treatment efficiency is only moderate. Septic tank systems are a type of simple onsite sewage facility (OSSF). They can be used in areas that are not connected to a sewerage system, such as rural areas. The treated liquid effluent is commonly disposed in a septic drain field which provides further treatment. However, groundwater pollution may occur and can be a problem.

Hazardous waste waste that poses substantial or potential threats to public health or the environment

Hazardous waste is waste that has substantial or potential threats to public health or the environment.

An additional strategy to water conservation is practicing sustainable methods of utilizing groundwater resources. [7] Groundwater flows due to gravity and eventually discharges into streams. [8] Excess pumping of groundwater leads to a decrease in groundwater levels and if continued it can exhaust the resource. [7] Ground and surface waters are connected and overuse of groundwater can reduce and, in extreme examples, diminish the water supply of lakes, rivers, and streams. [9] In coastal regions, over pumping groundwater can increase saltwater intrusion which results in the contamination of groundwater water supply. [9] Sustainable use of groundwater is essential in water conservation.

A fundamental component to water conservation strategy is communication and education outreach of different water programs. [10] Developing communication that educates science to land managers, policy makers, farmers, and the general public is another important strategy utilized in water conservation. [10] Communication of the science of how water systems work is an important aspect when creating a management plan to conserve that system and is often used for ensuring the right management plan to be put into action. [10]

Social solutions

Drip irrigation system in New Mexico VineyardDrip.JPG
Drip irrigation system in New Mexico

Water conservation programs involved in social solutions are typically initiated at the local level, by either municipal water utilities or regional governments. Common strategies include public outreach campaigns, [11] tiered water rates (charging progressively higher prices as water use increases), or restrictions on outdoor water use such as lawn watering and car washing. [12] Cities in dry climates often require or encourage the installation of xeriscaping or natural landscaping in new homes to reduce outdoor water usage. [13] Most urban outdoor water use in California is residential, [14] illustrating a reason for outreach to households as well as businesses.

One fundamental conservation goal is universal metering. The prevalence of residential water metering varies significantly worldwide. Recent studies have estimated that water supplies are metered in less than 30% of UK households, [15] and about 61% of urban Canadian homes (as of 2001). [16] Although individual water meters have often been considered impractical in homes with private wells or in multifamily buildings, the U.S. Environmental Protection Agency estimates that metering alone can reduce consumption by 20 to 40 percent. [17] In addition to raising consumer awareness of their water use, metering is also an important way to identify and localize water leakage. Water metering would benefit society, in the long run, it is proven that water metering increases the efficiency of the entire water system, as well as help unnecessary expenses for individuals for years to come. One would be unable to waste water unless they are willing to pay the extra charges, this way the water department would be able to monitor water usage by the public, domestic and manufacturing services.

Some researchers have suggested that water conservation efforts should be primarily directed at farmers, in light of the fact that crop irrigation accounts for 70% of the world's fresh water use. [18] The agricultural sector of most countries is important both economically and politically, and water subsidies are common. Conservation advocates have urged removal of all subsidies to force farmers to grow more water-efficient crops and adopt less wasteful irrigation techniques.[ citation needed ]

New technology poses a few new options for consumers, features such as full flush and half flush when using a toilet are trying to make a difference in water consumption and waste. Also available are modern shower heads that help reduce wasting water: Old shower heads are said to use 5-10 gallons per minute, while new fixtures available use 2.5 gallons per minute and offer equal water coverage. [19] Another method is to recycle the water of the shower directly, by means a semi-closed system which features a pump and filter. Such a setup has also been employed at the VIRTUe LINQ house. Besides recycling water, it also reuses the heat of the water (which would otherwise be lost). [20] [21]

Household applications

The Home Water Works website contains useful information on household water conservation. [22] Contrary to the popular view that the most effective way to save water is to curtail water-using behavior (e.g., by taking shorter showers), [23] experts suggest the most efficient way is replacing toilets and retrofitting washers; as demonstrated by two household end use logging studies in the U.S. [24] [25]

Water-saving technology for the home includes:

  1. Low-flow shower heads sometimes called energy-efficient shower heads as they also use less energy
  2. Low-flush toilets and composting toilets. These have a dramatic impact in the developed world, as conventional Western toilets use large volumes of water
  3. Dual flush toilets created by Caroma includes two buttons or handles to flush different levels of water. Dual flush toilets use up to 67% less water than conventional toilets
  4. Faucet aerators, which break water flow into fine droplets to maintain "wetting effectiveness" while using less water. An additional benefit is that they reduce splashing while washing hands and dishes
  5. Raw water flushing where toilets use sea water or non-purified water
  6. Wastewater reuse or recycling systems, allowing:
  7. Rainwater harvesting
  8. High-efficiency clothes washers
  9. Weather-based irrigation controllers
  10. Garden hose nozzles that shut off the water when it is not being used, instead of letting a hose run.
  11. Low flow taps in wash basins
  12. Swimming pool covers that reduce evaporation and can warm pool water to reduce water, energy and chemical costs.
  13. Automatic faucet is a water conservation faucet that eliminates water waste at the faucet. It automates the use of faucets without the use of hands.

Commercial applications

Many water-saving devices (such as low-flush toilets) that are useful in homes can also be useful for business water saving. Other water-saving technology for businesses includes:

Agricultural applications

Overhead irrigation, center pivot design PivotIrrigationOnCotton.jpg
Overhead irrigation, center pivot design

For crop irrigation, optimal water efficiency means minimizing losses due to evaporation, runoff or subsurface drainage while maximizing production. An evaporation pan in combination with specific crop correction factors can be used to determine how much water is needed to satisfy plant requirements. Flood irrigation, the oldest and most common type, is often very uneven in distribution, as parts of a field may receive excess water in order to deliver sufficient quantities to other parts. Overhead irrigation, using center-pivot or lateral-moving sprinklers, has the potential for a much more equal and controlled distribution pattern. Drip irrigation is the most expensive and least-used type, but offers the ability to deliver water to plant roots with minimal losses. However, drip irrigation is increasingly affordable, especially for the home gardener and in light of rising water rates. Using drip irrigation methods can save up to 30,000 gallons of water per year when replacing irrigation systems that spray in all directions. [26] There are also cheap effective methods similar to drip irrigation such as the use of soaking hoses that can even be submerged in the growing medium to eliminate evaporation.

As changing irrigation systems can be a costly undertaking, conservation efforts often concentrate on maximizing the efficiency of the existing system. This may include chiselling compacted soils, creating furrow dikes to prevent runoff, and using soil moisture and rainfall sensors to optimize irrigation schedules. [17] Usually large gains in efficiency are possible through measurement and more effective management of the existing irrigation system. The 2011 UNEP Green Economy Report notes that "[i]mproved soil organic matter from the use of green manures, mulching, and recycling of crop residues and animal manure increases the water holding capacity of soils and their ability to absorb water during torrential rains", [27] which is a way to optimize the use of rainfall and irrigation during dry periods in the season.

Water Reuse

Water shortage has become an increasingly difficult problem to manage. More than 40% of the world's population live in a region where the demand for water exceeds its supply. The imbalance between supply and demand, along with persisting issues such as climate change and population growth, has made water reuse a necessary method for conserving water. [28] There are a variety of methods used in the treatment of waste water to ensure that it is safe to use for irrigation of food crops and/or drinking water.

Seawater desalination requires more energy than the desalination of fresh water. Despite this, many seawater desalination plants have been built in response to water shortages around the world. This makes it necessary to evaluate the impacts of seawater desalination and to find ways to improve desalination technology. Current research involves the use of experiments to determine the most effective and least energy intensive methods of desalination. [29] [30]

Sand filtration is another method used to treat water. Recent studies show that sand filtration needs further improvements, but it is approaching optimization with its effectiveness at removing pathogens from water. [31] [32] Sand filtration is very effective at removing protozoa and bacteria, but struggles with removing viruses. [33] Large-scale sand filtration facilities also require large surface areas to accommodate them.

The removal of pathogens from recycled water is of high priority because wastewater always contains pathogens capable of infecting humans. The levels of pathogenic viruses have to be reduced to a certain level in order for recycled water to not pose a threat to human populations. Further research is necessary to determine more accurate methods of assessing the level of pathogenic viruses in treated wastewater. [34]

Wasting of water

Leaking garden hose bib Leaking garden hose bib.jpg
Leaking garden hose bib

Wasting of water (also called "water waste" in the U.S.) is the flip side of water conservation and, in household applications, it means causing or permitting discharge of water without any practical purpose. Inefficient water use is also considered wasteful. By EPA estimate, household leaks in the U.S. can waste approximately 900 billion gallons (3.4 billion cubic meters) of water annually nationwide. [35] Generally, water management agencies are reluctant or unwilling to give a concrete definition to the somewhat fuzzy concept of water waste. [36] However, definition of water waste is often given in local drought emergency ordinances. One example refers to any acts or omissions, whether willful or negligent, that are “causing or permitting water to leak, discharge, flow or run to waste into any gutter, sanitary sewer, watercourse or public or private storm drain, or to any adjacent property, from any tap, hose, faucet, pipe, sprinkler, pond, pool, waterway, fountain or nozzle.”. [37] In this example, the city code also clarifies that “in the case of washing, “discharge,” “flow” or “run to waste” means that water in excess of that necessary to wash, wet or clean the dirty or dusty object, such as an automobile, sidewalk, or parking area, flows to waste. Water utilities (and other media sources) often provide listings of wasteful water-use practices and prohibitions of wasteful uses. Examples include utilities in San Antonio, Texas. [38] Las Vegas, Nevada, [39] California Water Service company in California, [40] and City of San Diego, California. [41] The City of Palo Alto in California enforces permanent water use restrictions on wasteful practices such as leaks, runoff, irrigating during and immediately after rainfall, and use of potable water when non-potable water is available. [42] Similar restrictions are in effect in the State of Victoria, Australia. [43] Temporary water use bans (also known as "hosepipe bans") are used in England, Scotland, Wales and Northern Ireland. [44]

Strictly speaking, water that is discharged into the sewer, or directly to the environment is not wasted or lost. It remains within the hydrologic cycle and returns to the land surface and surface water bodies as precipitation. However, in many cases, the source of the water is at a significant distance from the return point and may be in a different catchment. The separation between extraction point and return point can represent significant environmental degradation in the watercourse and riparian strip. What is "wasted" is the community's supply of water that was captured, stored, transported and treated to drinking quality standards. Efficient use of water saves the expense of water supply provision and leaves more fresh water in lakes, rivers and aquifers for other users and also for supporting ecosystems. A concept that is closely related to water wasting is "water-use efficiency." Water use is considered inefficient if the same purpose of its use can be accomplished with less water. Technical efficiency derives from engineering practice where it is typically used to describe the ratio of output to input and is useful in comparing various products and processes. [45] For example, one showerhead would be considered more efficient than another if it could accomplish the same purpose (i.e., of showering) by using less water or other inputs (e.g., lower water pressure). However, the technical efficiency concept is not useful in making decisions of investing money (or resources) in water conservation measures unless the inputs and outputs are measured in value terms. This expression of efficiency is referred to as economic efficiency and is incorporated into the concept of water conservation.

See also

Related Research Articles

Brine A highly concentrated solution of a salt in water

Brine is a high-concentration solution of salt in water. In different contexts, brine may refer to salt solutions ranging from about 3.5% up to about 26%. Lower levels of concentration are called by different names: fresh water, brackish water, and saline water.

Desalination Removal of salts and minerals from a substance

Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture.

Greywater A type of wastewater generated in households without toilet wastewater

Greywater or sullage is all wastewater generated in households or office buildings from streams without fecal contamination, i.e. all streams except for the wastewater from toilets. Sources of greywater include, sinks, showers, baths, clothes washing machines or dish washers. As greywater contains fewer pathogens than domestic wastewater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses.

Sustainable living describes a lifestyle that attempts to reduce an individual's or society's use of the Earth's natural resources, and one's personal resources. Its practitioners often attempt to reduce their carbon footprint by altering their methods of transportation, energy consumption, and/or diet. Its proponents aim to conduct their lives in ways that are consistent with sustainability, naturally balanced, and respectful of humanity's symbiotic relationship with the Earth's natural ecology. The practice and general philosophy of ecological living closely follows the overall principles of sustainable development.

Water treatment Process that improves the quality of water

Water treatment is any process that improves the quality of water to make it more acceptable for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.

Reclaimed water Converting wastewater into water that can be reused for other purposes

Reclaimed or recycled water is the process of converting wastewater into water that can be reused for other purposes. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. Reused water may also be directed toward fulfilling certain needs in residences, businesses, and industry, and could even be treated to reach drinking water standards. This last option is called either "direct potable reuse" or "indirect potable" reuse, depending on the approach used. Colloquially, the term "toilet to tap" also refers to potable reuse.

Issues that affect drinking water supply and sanitation in the United States include water scarcity, pollution, a backlog of investment, concerns about the affordability of water for the poorest, and a rapidly retiring workforce. Increased variability and intensity of rainfall as a result of climate change is expected to produce both more severe droughts and flooding, with potentially serious consequences for water supply and for pollution from combined sewer overflows. Droughts are likely to particularly affect the 66 percent of Americans whose communities depend on surface water. As for drinking water quality, there are concerns about disinfection by-products, lead, perchlorates and pharmaceutical substances, but generally drinking water quality in the U.S. is good.

Water efficiency is reducing water wastage by measuring the amount of water required for a particular purpose and the amount of water used or delivered. Water efficiency differs from water conservation in that it focuses on reducing waste, not restricting use. Solutions for water efficiency focus not only on reducing the amount of potable water used, but also on reducing the use of non-potable water where appropriate. It also emphasises the influence consumers can have in water efficiency by making small behavioural changes to reduce water wastage and by choosing more water efficient products.

A low-flush toilet is a flush toilet that uses significantly less water than a full-flush toilet. Low-flush toilets use 4.8 litres or less per flush, as opposed to 6 litres or more. They came into use in the United States in the 1990s, in response to water conservation concerns. Low-flush toilets include single-flush models and dual-flush toilets, which typically use 1.6 USgpf for the full flush and 1.28 US for a reduced flush.

Water supply and sanitation in Israel are intricately linked to the historical development of Israel. Because rain falls only in the winter, and largely in the northern part of the country, irrigation and water engineering are considered vital to the country's economic survival and growth. Large scale projects to desalinate seawater, direct water from rivers and reservoirs in the north, make optimal use of groundwater, and reclaim flood overflow and sewage have been undertaken. Among them is the National Water Carrier, carrying water from the country's biggest freshwater lake, the Sea of Galilee, to the northern Negev desert through channels, pipes and tunnels. Israel's water demand today outstrips available conventional water resources. Thus, in an average year, Israel relies for about half of its water supply on unconventional water resources, including reclaimed water and desalination. A particularly long drought in 1998–2002 had prompted the government to promote large-scale seawater desalination.

Sewer dosing unit

A sewer dosing unit (SDU) is a plumbing device to allow effective sewage disposal with low liquid-flow rates. With a global emphasis on water saving, many new buildings and renovations are seeing the installation of water saving fixtures such as low flow shower heads and low flush toilets. With the decrease in wastewater flows problems are arising from waste solids not being carried completely to the main sewers, often causing blockages.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, therefore reducing the need for landfill space and also extracting maximum value from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste can be used to make new products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Reuse of excreta Safe, beneficial use of animal or human excreta

Reuse of excreta refers to the safe, beneficial use of animal or human excreta, i.e. faeces and urine. Such beneficial use involves mainly the nutrient, organic matter and energy contained in excreta, rather than the water content. Reuse of excreta can involve using it as soil conditioner or fertilizer in agriculture, gardening, aquaculture or horticultural activities. Excreta can also be used as a fuel source or as a building material.

Rainwater harvesting in Canada

Rainwater harvesting is becoming a procedure that many Canadians are incorporating into their daily lives, although data does not give exact figures for implementation. Rainwater can be used for a number of purposes including stormwater reduction, irrigation, laundry and portable toilets. In addition to low costs, rainwater harvesting is useful for landscape irrigation.

Vermifilter Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that produce humus. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater. This is an important feature because bacteria and worms that rapidly decompose organic substances need oxygen to survive. Wastewater is purified by removing pathogens and oxygen demand.

Water reuse in California

As a heavily populated state in the drought-prone arid west, water reuse in California—the use of reclaimed water for beneficial use—has developed as an integral part of water in California's story enabling both the economy and population to grow. Reclaimed water is treated wastewater that comes from homes and businesses, such as sink water, shower water, and even toilet water; this includes everything dumped down these wastewater drains from laundry soap to bleach to oil to human waste. Wastewater can divided into greywater and blackwater, with the first being defined as water that had been used for laundry, bathing, sink washing, and dishwaters. Blackwater, on the other hand, is defined as sewage that includes feces from toilets. Due to the low amounts of physical pollutants in greywater, most of its contaminants are dissolved organic matter, which can be physically filtered and cleaned through various membranes, as well as through biological treatment methods.

Residential water use in the U.S. and Canada

Residential water use includes all indoor and outdoor uses of drinking quality water at single-family and multifamily dwellings. These uses include a number of defined purposes such as flushing toilets, washing clothes and dishes, showering and bathing, drinking, food preparation, watering lawns and gardens, and maintaining swimming pools. Some of these end uses are detectable while others are more difficult to gauge.

A microbial desalination cell (MDC) is a biological electrochemical system that implements the use of electro-active bacteria to power desalination of water in situ, resourcing the natural anode and cathode gradient of the electro-active bacteria and thus creating an internal supercapacitor. Available water supply has become a worldwide endemic as only .3% of the earth's water supply is usable for human consumption, while over 99% is sequestered by oceans, glaciers, brackish waters, and biomass. Current applications in electrocoagulation, such as microbial desalination cells, are able to desalinate and sterilize formerly unavailable water to render it suitable for safe water supply. Microbial desalination cells stem from microbial fuel cells, deviating by no longer requiring the use of a mediator and instead relying on the charged components of the internal sludge to power the desalination process. Microbial desalination cells therefore do not require additional bacteria to mediate the catabolism of the substrate during biofilm oxidation on the anodic side of the capacitor. MDCs and other bio-electrical systems are favored over reverse osmosis, nanofiltration and other desalination systems due to lower costs, energy and environmental impacts associated with bio-electrical systems.

References

  1. "Water conservation « Defra". defra.gov.uk. 2013. Retrieved January 24, 2013.
  2. "Cases in Water Conservation: How Efficiency Programs Help Water Utilities Save Water and Avoid Costs" (PDF). EPA.gov. US Environmental Protection Agency.
  3. Hermoso, Virgilio; Abell, Robin; Linke, Simon; Boon, Philip (2016). "The role of protected areas for freshwater biodiversity conservation: challenges and opportunities in a rapidly changing world". Aquatic Conservation: Marine and Freshwater Ecosystems. 26 (S1): 3–11. doi:10.1002/aqc.2681.
  4. Duane D. Baumann; John J. Boland; John H. Sims (April 1984). "Water Conservation: The Struggle over Definition". Water Resources Research. 20 (4): 428–434. doi:10.1029/WR020i004p00428.
  5. Vickers, Amy (2002). Water Use and Conservation. Amherst, MA: water plow Press. p. 434. ISBN   978-1-931579-07-0.
  6. Geerts, S.; Raes, D. (2009). "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas". Agric. Water Manage. 96 (9): 1275–1284. doi:10.1016/j.agwat.2009.04.009.
  7. 1 2 3 4 5 6 Kumar Kurunthachalam, Senthil (2014). "Water Conservation and Sustainability: An Utmost Importance". Hydrol Current Res.
  8. 1 2 3 "Description of the Hydrologic Cycle". nwrfc.noaa.gov/rfc/. NOAA River Forecast Center.
  9. 1 2 3 4 "Potential threats to Groundwater". groundwater.org/. The Groundwater Foundation.
  10. 1 2 3 Delgado, Jorge A.; Groffman, Peter M.; Nearing, Mark A.; Goddard, Tom; Reicosky, Don; Lal, Rattan; Kitchen, Newell R.; Rice, Charles W.; Towery, Dan; Salon, Paul (1 July 2011). "Conservation practices to mitigate and adapt to climate change". Journal of Soil and Water Conservation. 66 (4): 118A–129A. doi:10.2489/jswc.66.4.118A. ISSN   0022-4561 . Retrieved 25 May 2018.
  11. "Water - Use It Wisely." U.S. multi-city public outreach program. Park & Co., Phoenix, AZ. Accessed 2010-02-02.
  12. U.S. Environmental Protection Agency (EPA) (2002). Cases in Water Conservation (PDF) (Report). Retrieved 2010-02-02. Document No. EPA-832-B-02-003.
  13. Albuquerque Bernalillo County Water Utility Authority (2009-02-06). "Xeriscape Rebates". Albuquerque, NM. Retrieved 2010-02-02.
  14. Heberger, Matthew (2014). "Issue Brief" (PDF). Urban Water Conservation and Efficiency Potential in California: 12.
  15. "Time for universal water metering?" Innovations Report. May 2006.
  16. Environment Canada (2005). Municipal Water Use, 2001 Statistics (PDF) (Report). Retrieved 2010-02-02. Cat. No. En11-2/2001E-PDF. ISBN   0-662-39504-2. p. 3.
  17. 1 2 EPA (2010-01-13). "How to Conserve Water and Use It Effectively". Washington, DC. Retrieved 2010-02-03.
  18. Pimentel, Berger; et al. (October 2004). "Water resources: agricultural and environmental issues". BioScience. 54 (10): 909. doi:10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2.
  19. "Reduce Hot Water Use for Energy Savings". Energy.gov. Retrieved 2019-03-20.
  20. Team VIRTUe bouwt slim en duurzaam huis dat mens en technologie verbindt
  21. Team VIRTUe presenting LINQ
  22. "Water Usage Calculator, Water Conservation and Efficiency - Home Water Works". www.home-water-works.org.
  23. Attari, Shahzeen Z. (26 February 2014). "Perceptions of water use". Proceedings of the National Academy of Sciences. 111 (14): 5129–34. doi:10.1073/pnas.1316402111. PMC   3986180 . PMID   24591608 via www.pnas.org.
  24. Mayer, P.W.; DeOreo, W.B.; Opitz, E.M.; Kiefer, J.C.; Davis, W.Y.; Dziegielewski, B.; & Nelson, J.O., 1999. Residential End Uses of Water. AWWARF and AWWA, Denver. http://www.waterrf.org/PublicReportLibrary/RFR90781_1999_241A.pdf
  25. William B. DeOreo, Peter Mayer, Benedykt Dziegielewski, Jack Kiefer. 2016. Residential End Uses of Water, Version 2. Water Research Foundation. Denver, Colorado. http://www.waterrf.org/Pages/Projects.aspx?PID=4309
  26. "Water-Saving Technologies". WaterSense: An EPA Partnership Program. US Environmental Protection Agency.
  27. UNEP, 2011, Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication, www.unep.org/greeneconomy
  28. Fatta-Kassinos, Despo; Dionysiou, Dionysios D.; Kümmerer, Klaus (2016). Wastewater Reuse and Current Challenges - Springer. The Handbook of Environmental Chemistry. 44. doi:10.1007/978-3-319-23892-0. ISBN   978-3-319-23891-3.
  29. Elimelech, Menachem; Phillip, William A. (2011-08-05). "The Future of Seawater Desalination: Energy, Technology, and the Environment". Science. 333 (6043): 712–717. doi:10.1126/science.1200488. ISSN   0036-8075. PMID   21817042.
  30. Han, Songlee; Rhee, Young-Woo; Kang, Seong-Pil (2017-02-17). "Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination". Desalination. 404: 132–137. doi:10.1016/j.desal.2016.11.016.
  31. Seeger, Eva M.; Braeckevelt, Mareike; Reiche, Nils; Müller, Jochen A.; Kästner, Matthias (2016-10-01). "Removal of pathogen indicators from secondary effluent using slow sand filtration: Optimization approaches". Ecological Engineering. 95: 635–644. doi:10.1016/j.ecoleng.2016.06.068.
  32. Vries, D.; Bertelkamp, C.; Kegel, F. Schoonenberg; Hofs, B.; Dusseldorp, J.; Bruins, J. H.; de Vet, W.; van den Akker, B. (2017). "Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration". Water Research. 109: 35–45. doi:10.1016/j.watres.2016.11.032. PMID   27865171.
  33. "Slow Sand Filtration". CDC.gov. May 2, 2014.
  34. Gerba, Charles P.; Betancourt, Walter Q.; Kitajima, Masaaki (2017). "How much reduction of virus is needed for recycled water: A continuous changing need for assessment?". Water Research. 108: 25–31. doi:10.1016/j.watres.2016.11.020. PMID   27838026.
  35. "Statistics and Facts | WaterSense | US EPA". Epa.gov. 2017-01-23. Retrieved 2017-07-11.
  36. "Janet C. Neuman. Beneficial Use, Waste, and Forfeiture:The Inefficient Search for Efficiency in Western Water Use" (PDF). Retrieved 2017-08-06.
  37. "14.09.030 Definition of water waste". Qcode.us. Retrieved 2017-07-11.
  38. "SAWS Report Water Waste - What is Water Waste?". Saws.org. Retrieved 2017-07-11.
  39. "Water Waste". Lvvwd.com. Retrieved 2017-07-11.
  40. "Report Water Waste". Cal Water. 2015-12-03. Retrieved 2017-07-11.
  41. "Water Saving Tips | City of San Diego Official Website". Sandiego.gov. Retrieved 2017-07-11.
  42. "Water & Drought Update - Palo Alto Water Use Guidelines" . Retrieved 2017-08-06.
  43. "Permanent water saving rules" . Retrieved 2017-08-06.
  44. Water UK http://www.water.org.uk/consumers/tubs
  45. Dziegielewski, B. J.; Kiefer, C. (January 22, 2010). "Water Conservation Measurement Metrics: Guidance Report" (PDF). American Water Works Association.