Surface irrigation

Last updated
Furrow irrigation of sugar cane in Australia, 2006 Furrow irrigated Sugar.JPG
Furrow irrigation of sugar cane in Australia, 2006

Surface irrigation is where water is applied and distributed over the soil surface by gravity. It is by far the most common form of irrigation throughout the world and has been practiced in many areas virtually unchanged for thousands of years.

Contents

Surface irrigation is often referred to as flood irrigation, implying that the water distribution is uncontrolled and therefore, inherently inefficient. In reality, some of the irrigation practices grouped under this name involve a significant degree of management (for example surge irrigation). Surface irrigation comes in three major types; level basin, furrow and border strip.

Process

The process of surface irrigation can be described using four phases. As water is applied to the top end of the field it will flow or advance over the field length. The advance phase refers to that length of time as water is applied to the top end of the field and flows or advances over the field length. After the water reaches the end of the field it will either run-off or start to pond. The period of time between the end of the advance phase and the shut-off of the inflow is termed the wetting, ponding or storage phase. As the inflow ceases the water will continue to runoff and infiltrate until the entire field is drained. The depletion phase is that short period of time after cut-off when the length of the field is still submerged. The recession phase describes the time period while the water front is retreating towards the downstream end of the field. The depth of water applied to any point in the field is a function of the opportunity time, the length of time for which water is present on the soil surface.

Types of surface irrigation

Basin irrigation

Level basin flood irrigation on wheat LevelBasinFloodIrrigation.JPG
Level basin flood irrigation on wheat
Residential flood irrigation in the Southwest, United States of America. Residential flood irrigation in Phoenix, Arizona, in the United States of America.jpg
Residential flood irrigation in the Southwest, United States of America.

Level basin irrigation has historically been used in small areas having level surfaces that are surrounded by earth banks. The water is applied rapidly to the entire basin and is allowed to infiltrate. In traditional basins no water is permitted to drain from the field once it is irrigated. Basin irrigation is favored in soils with relatively low infiltration rates. [1] This is also a method of surface irrigation. Fields are typically set up to follow the natural contours of the land but the introduction of laser levelling and land grading has permitted the construction of large rectangular basins that are more appropriate for mechanised broadacre cropping.

Drainback level basins

Drainback level basins (DBLBs) or contour basins are a variant of basin irrigation where the field is divided into a number of terraced rectangular bays which are graded level or have no significant slope. Water is applied to the first bay (usually the highest in elevation) and then the desired depth of applied water is permitted to drain back off that bay and flow to the next bay which is at a lower elevation than the first. Each bay is irrigated in turn using a combination of drainage water from the previous bay and continuing inflow from the supply channel. Successful operation of these systems is reliant on a sufficient elevation drop between successive bays. These systems are commonly used in Australia where rice and wheat are grown in rotation. [2]

Furrow irrigation

Furrow irrigation system using siphon tubes SiphonTubes.JPG
Furrow irrigation system using siphon tubes
Gated pipe supply system GatedPipe.JPG
Gated pipe supply system

Furrow irrigation is conducted by creating small parallel channels along the length of the field parallel to the direction of its predominant slope. Water is applied to the top end of each furrow and flows down the field under the influence of gravity. Water may be supplied using gated pipe, siphon and head ditch, or bankless systems. The speed of water movement is determined by many factors such as slope, surface roughness, and furrow shape, but most importantly by the inflow rate and soil infiltration rate. The spacing between adjacent furrows is governed by the crop species, common spacings typically range from 0.75 to 2 m (2.5 to 6.6 ft). The crop is planted on the ridge between furrows which may contain a single row of plants or several rows in the case of a bed-type system. Furrows may range anywhere from less than 100 to 2,000 m (0.062 to 1.243 mi) long depending on the soil type, location, and crop type. Shorter furrows are commonly associated with higher uniformity of application but result in increasing potential for runoff losses. Furrow irrigation is particularly suited to broadacre row crops such as cotton, maize, and sugar cane. It is also practiced in various horticultural industries such as citrus, stone fruit, and tomatoes.

The water can take a considerable period of time to reach the other end, meaning water has been infiltrating for a longer period of time at the top end of the field. This results in poor uniformity with high application at the top end with lower application at the bottom end. In most cases the performance of furrow irrigation can be improved through increasing the speed at which water moves along the field (the advance rate). This can be achieved through increasing flow rates or through the practice of surge irrigation. Increasing the advance rate not only improves the uniformity but also reduces the total volume of water required to complete the irrigation.

Surge irrigation

This type of irrigation is relatively new with research and development into its practice and modelling started in early 1980s. [3] Surge Irrigation is a variant of furrow irrigation where the water supply is pulsed on and off in planned time periods (e.g. on for 1 hour off for 1½ hour). The wetting and drying cycles reduce infiltration rates resulting in faster advance rates and higher uniformity [4] than continuous flow. The reduction in infiltration is a result of surface consolidation, filling of cracks and micro pores and the disintegration of soil particles during rapid wetting and consequent surface sealing during each drying phase. [5] On those soils where surging is effective it has been reported to allow completion of the irrigation with a lower overall water usage and therefore higher efficiency and potentially offer the ability to practice deficit irrigation. [6] The effectiveness of surge irrigation is soil type dependent; for example, many clay soils experience a rapid sealing behaviour under continuous flow and therefore surge irrigation offers little benefit. [1]

Bay/border strip irrigation

Border strip, otherwise known as border check or bay irrigation could be considered as a hybrid of level basin and furrow irrigation. The field is divided into a number of bays or strips, each bay is separated by raised earth check banks (borders). The bays are typically longer and narrower compared to basin irrigation and are orientated to align lengthwise with the slope of the field. Typical bay dimensions are 10 to 70 m (10 to 80 yd) wide and 100 to 700 m (110 to 770 yd) long. The water is applied to the top end of the bay, which is usually constructed to facilitate free-flowing conditions at the downstream end. One common use of this technique includes the irrigation of pasture for dairy production.

Spate irrigation

Spate irrigation (from the English word spate, meaning: a. a flood or inundation. b. a river flooding its banks) uses seasonal floods of rivers, streams, ponds and lakes to fill water storage basins. It is an ancient method of irrigation in arid and semi-arid climates in the Middle East, North Africa, West Asia, East Africa and parts of Latin America. [7]

In spate irrigation, water is diverted from normally dry river beds when the river is in spate. The flood water is then diverted to the fields. This may be done by free intakes, by diversion spurs or by bunds, that are built across the river bed. The flood water, typically lasting a few hours or a few days, is channelled through a network of primary, secondary and sometimes tertiary flood channels. Command areas may range from anything between a few hectares to over 25,000 hectares (62,000 acres).

Spate irrigation systems require huge management efforts to control and optimize the flow of water. Because fast-moving water is capable of moving very large amounts of sediment, the heights of river banks and the composition of their beds can change rapidly. Diverting the flow of a powerful force which is capable of moving rocks, soils and other materials used to divert the path of the water can prove difficult. [8]

Issues associated with surface irrigation

While surface irrigation can be practiced effectively using the correct management under the right conditions, it is often associated with a number of issues undermining productivity and environmental sustainability: [9]

The aim of modern surface irrigation management is to minimize the risk of these potential adverse impacts.

See also

Related Research Articles

<span class="mw-page-title-main">Irrigation</span> Agricultural artificial application of water to land

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.

<span class="mw-page-title-main">Nutrient management</span> Management of nutrients in agriculture

Nutrient management is the science and practice directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve optimal nutrient use efficiency, crop yields, crop quality, and economic returns, while reducing off-site transport of nutrients (fertilizer) that may impact the environment. It involves matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place of nutrient application.

<span class="mw-page-title-main">Soil conservation</span> Preservation of soil nutrients

Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination.

The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas.

Hydrophobic soil is a soil whose particles repel water. The layer of hydrophobicity is commonly found at or a few centimeters below the surface, parallel to the soil profile. This layer can vary in thickness and abundance and is typically covered by a layer of ash or burned soil.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">Water politics in the Nile Basin</span> Political interactions between nations based on the path of the Nile through international borders

As a body of water that crosses numerous international political borders, the Nile river is subject to multiple political interactions. Traditionally it is seen as the world's longest river flowing 6,700 kilometres (4,200 mi) through ten countries in northeastern Africa – Rwanda, Burundi, Democratic Republic of the Congo (DRC), Tanzania, Kenya, Uganda, Ethiopia, South Sudan, Sudan and Egypt with varying climates.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

<span class="mw-page-title-main">Soil salinity control</span> Controlling the problem of soil salinity

Soil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also called soil improvement, rehabilitation, remediation, recuperation, or amelioration.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">SahysMod</span>

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

An agricultural drainage system is a system by which water is drained on or in the soil to enhance agricultural production of crops. It may involve any combination of stormwater control, erosion control, and watertable control.

<span class="mw-page-title-main">Agricultural hydrology</span>

Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage.

<span class="mw-page-title-main">Environmental effects of irrigation</span> Land & irrigation

The environmental effects of irrigation relate to the changes in quantity and quality of soil and water as a result of irrigation and the subsequent effects on natural and social conditions in river basins and downstream of an irrigation scheme. The effects stem from the altered hydrological conditions caused by the installation and operation of the irrigation scheme.

This page shows statistical data on irrigation of agricultural lands worldwide.
Irrigation is the artificial abstraction of water from a source followed by the distribution of it at scheme level aiming at application at field level to enhance crop production when rainfall is scarce.

Water resources management in El Salvador is characterized by difficulties in addressing severe water pollution throughout much of the country's surface waters due to untreated discharges of agricultural, domestic and industrial run off. The river that drains the capital city of San Salvador is considered to be polluted beyond the capability of most treatment procedures.

DPHM-RS is a semi-distributed hydrologic model developed at University of Alberta, Canada.

Alternate wetting and drying (AWD) is a water management technique, practiced to cultivate irrigated lowland rice with much less water than the usual system of maintaining continuous standing water in the crop field. It is a method of controlled and intermittent irrigation. A periodic drying and re-flooding irrigation scheduling approach is followed in which the fields are allowed to dry for few days before re-irrigation, without stressing the plants. This method reduces water demand for irrigation and greenhouse gas emissions without reducing crop yields.

Water use in alluvial fans refers to irrigation systems using the water resources in alluvial fans, mainly river floods and groundwater recharged by infiltration of rain or river water, to enhance the production of agricultural crops.

References

  1. 1 2 Walker, W.R.; Skogerboe, G.V. (1987). Surface irrigation. Prentice-Hall, Englewood Cliffs.
  2. North, Sam (2008). A review of Basin (Contour) Irrigation Systems I:Current design and management practices in the Southern Murray-Darling Basin, Australia (PDF) (Technical report). CRC for Irrigation Futures. Irrigation Matters Series No. 01-1/08. Archived from the original (PDF) on 2016-03-04. Retrieved 2015-08-13.
  3. Haie, Naim (1984) Hydrodynamic Simulation of Continuous and Surged Surface Flow. Ph.D. dissertation, School of Engineering, Utah State University, Logan, Utah. (approved in mid 1983)
  4. El-Dine, T. G.; Hosny, M. M. (2000). "Field evaluation of surge and continuous flows in furrow irrigation systems". Water Resources Management. 14 (2): 77–87. doi:10.1023/a:1008189004992. S2CID   153875489.
  5. Kemper, W. D.; Trout, T. J.; Humpherys, A. S.; Bullock, M. S. (1988). "Mechanisms by which surge irrigation reduces furrow infiltration rates in a silty loam soil". Transactions of the ASAE. 31 (3): 821–829. doi:10.13031/2013.30787.
  6. Horst, M. G.; Shamutalov, S. S.; Goncalves, J. M.; Pereira, L. S. (2007). "Assessing impacts of surge-flow irrigation on water saving and productivity of cotton". Agricultural Water Management. 87 (2): 115–127. doi:10.1016/j.agwat.2006.06.014.
  7. Bashir, Eiman Mohamed Fadul (2020). Strategies to Cope with Risks of Uncertain Water Supply in Spate Irrigation Systems. CRC Press. p. 2. ISBN   9781000047189.
  8. Tadesse, Kassahun Birhanu; Dinka, Megersa Olumana (2018). "Improving Traditional Spate Irrigation Systems: A Review". In Almusaed, Amjad (ed.). Landscape Architecture; The Sense of Places, Models and Applications. IntechOpen. pp. 141–160. ISBN   9781789237122.
  9. ILRI, 1989, Effectiveness and Social/Environmental Impacts of Irrigation Projects: a Review. In: Annual Report 1988, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, pp. 18 - 34. On line:
  10. Drainage Manual: A Guide to Integrating Plant, Soil, and Water Relationships for Drainage of Irrigated Lands. Interior Dept., Bureau of Reclamation. 1993. ISBN   0-16-061623-9.
  11. "Free articles and software on drainage of waterlogged land and soil salinity control". waterlog.info. Retrieved 2010-07-28.