A faucet aerator (or tap aerator) is often found at the tip of modern indoor water faucets. Aerators can simply be screwed onto the faucet head, creating a non-splashing stream and often delivering a mixture of water and air.
The aerator was invented by Greek engineer Elie Aghnides. [1]
An aerator can: [2]
When a single stream of water hits a surface the water must go somewhere, and because the stream is uniform the water will tend to go mostly in the same direction. If a single stream hits a surface which is curved, then the stream will conform to the shape and be easily redirected with the force of the volume of water falling. Adding the aerator does two things: it reduces the volume of falling water which reduces the splash distance, and it creates multiple "mini-streams" within the main stream. Each mini-stream, if it were falling by itself, would splash or flow in a unique and different way when it hit the surface, as compared to the other mini-streams. Because they are all falling at the same time, the streams will splash in their own way but end up hitting other splash streams. The resulting interference cancels out the majority of the splashing effect. [3]
Because the aerator limits the water flow through the faucet, water usage is reduced compared to the same duration of flow without an aerator. In the case of hot water, because less water is used, less heat energy is used. [4]
The perception of water pressure is actually the speed of the water as it hits a surface (the hands, in the case of hand washing). When an aerator is added to the faucet (or fluid stream), there is a region of high pressure created behind the aerator. Because of the higher pressure behind the aerator and the low pressure in front of it (outside the faucet), due to Bernoulli's principle there is an increase in velocity of the fluid flow.
Aeration occurs in two basic steps: [2] [5]
Three major components of an aerator are: housing, insert and rubber washer.
A faucet aerator can be classified on the basis of its flow rate and the type of water stream (aerated, non-aerated, spray) it produces. In general, standard-sized aerators are available with female (M22x1) or male threading (M24x1). Bathtub spouts often have a bigger diameter with a male M28x1 thread. The United States uses different thread sizes: 15⁄16"-27 for standard-sized male and 55⁄64"-27 for standard-sized female threads.
Using faucet aerators may help meet local regulations and construction standards such as ASME A112.18.1, U.S. Leadership in Energy and Environmental Design (LEED) certifications [6] [ failed verification ] or WELS (Australia/New Zealand). In Europe, European standard EN246 "Sanitary tapware — General specifications for flow rate regulators" defines the flow rate and noise reduction requirements.
Cavitation in fluid mechanics and engineering normally refers to the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal, causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial cavitation and non-inertial cavitation.
A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy.
A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.
Whitewater forms in the context of rapids, in particular, when a river's gradient changes enough to generate so much turbulence that air is trapped within the water. This forms an unstable current that froths, making the water appear opaque and white.
A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.
A tap is a valve controlling the release of a fluid.
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi.
A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.
In fluid mechanics, a splash is a sudden disturbance to the otherwise quiescent free surface of a liquid. The disturbance is typically caused by a solid object suddenly hitting the surface, although splashes can occur in which moving liquid supplies the energy. This use of the word is onomatopoeic; in the past, the term "plash" has also been used.
Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.
A leak is a way for fluid to escape a container or fluid-containing system, such as a tank or a ship's hull, through which the contents of the container can escape or outside matter can enter the container. Leaks are usually unintended and therefore undesired. The word leak usually refers to a gradual loss; a sudden loss is usually called a spill.
Aeration is the process by which air is circulated through, mixed with or dissolved in a liquid or other substances that act as a fluid. Aeration processes create additional surface area in the mixture, allowing greater chemical or suspension reactions.
In fluid dynamics, the Plateau–Rayleigh instability, often just called the Rayleigh instability, explains why and how a falling stream of fluid breaks up into smaller packets with the same volume but less surface area. It is related to the Rayleigh–Taylor instability and is part of a greater branch of fluid dynamics concerned with fluid thread breakup. This fluid instability is exploited in the design of a particular type of ink jet technology whereby a jet of liquid is perturbed into a steady stream of droplets.
A pressure regulator is a valve that controls the pressure of a fluid to a desired value, using negative feedback from the controlled pressure. Regulators are used for gases and liquids, and can be an integral device with a pressure setting, a restrictor and a sensor all in the one body, or consist of a separate pressure sensor, controller and flow valve.
The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and temperatures, and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and temperatures, and variety of breathing gases is broader in this application. A diving regulator is a device that reduces the high pressure in a diving cylinder or surface supply hose to the same pressure as the diver's surroundings. It is desirable that breathing from a regulator requires low effort even when supplying large amounts of breathing gas as this is commonly the limiting factor for underwater exertion, and can be critical during diving emergencies. It is also preferable that the gas is delivered smoothly without any sudden changes in resistance while inhaling or exhaling, and that the regulator does not lock up and either fail to supply gas or free-flow. Although these factors may be judged subjectively, it is convenient to have standards by which the many different types and manufactures of regulators may be objectively compared.
Membrane bioreactors are combinations of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. These technologies are now widely used for municipal and industrial wastewater treatment. The two basic membrane bioreactor configurations are the submerged membrane bioreactor and the side stream membrane bioreactor. In the submerged configuration, the membrane is located inside the biological reactor and submerged in the wastewater, while in a side stream membrane bioreactor, the membrane is located outside the reactor as an additional step after biological treatment.
Tankless water heaters — also called instantaneous, continuous flow, inline, flash, on-demand, or instant-on water heaters — are water heaters that instantly heat water as it flows through the device, and do not retain any water internally except for what is in the heat exchanger coil unless the unit is equipped with an internal buffer tank. Copper heat exchangers are preferred in these units because of their high thermal conductivity and ease of fabrication. However, copper heat exchangers are more susceptible to scale buildup than stainless steel heat exchangers.
The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.
A low-flow fixture is a water saving plumbing fixture designed to achieve water savings by having a lower flow rate of water or a smaller quantity per flush. Some of these low-flow fixtures are faucets, showerheads, and toilets. In the United States a maximum water usage of conventional plumbing fixtures was federally mandated by the Energy policy act of 1992. Low-flow fixtures are designed to save water over conventional fixtures by having a lower flow rate while still maintaining satisfactory performance. The Environmental protection agency (EPA) WaterSense program has requirements for plumbing fixtures to achieve their definition for water saving low-flow.