Small hydro

Last updated
Small power plant of Licq-Atherey (Pyrenees-Atlantiques, France). Fall in Licq-Atherey.jpg
Small power plant of Licq-Athérey (Pyrénées-Atlantiques, France).
An 1895 hydroelectric plant near Telluride, Colorado. AmesHydro,CO.jpg
An 1895 hydroelectric plant near Telluride, Colorado.

Small hydro is the development of hydroelectric power on a scale suitable for local community and industry, or to contribute to distributed generation in a regional electricity grid. [1] Exact definitions vary, but a "small hydro" project is less than 50 megawatts (MW), and can be further subdivide by scale into "mini" (<1MW), "micro" (<100 kW), "pico" (<10 kW). In contrast many hydroelectric projects are of enormous size, such as the generating plant at the Three Gorges Dam at 22,500 megawatts or the vast multiple projects of the Tennessee Valley Authority.

Contents

Small hydro projects may be built in isolated areas that would be uneconomic to serve from a national electricity grid, or in areas where a national grid does not exist. By not requiring large dams or large water storage capabilities small hydro projects are relatively benign on the environment. [2] This makes small hydro projects an attractive compromise for renewable energy activists, environmentalists, and investors.

Description

The use of the term "small hydro" varies considerably around the world, the maximum limit is usually somewhere between 10 and 30 MW. While a minimum limit is not usually set, the US National Hydropower Association specifies a minimum limit of 5 MW. [3] In California, hydroelectric generating stations with a maximum capacity of less than 30 MW are classified as small, and are eligible for inclusion in the state's renewable portfolio standard, while hydroelectric generating stations with a higher capacity are classified as large and are not considered renewable. [4] The "small hydro" description may be stretched up to 50 MW in the United States, Canada and China. [5] In India, hydro projects up to 25 MW station capacities have been categorized as Small Hydro Power (SHP) projects. [6]

Small hydro can be further subdivided into mini hydro, usually defined as 100 to 1,000 kilowatts (kW), and micro hydro which is 5 to 100 kW. Micro hydro is usually the application of hydroelectric power sized for smaller communities, single families or small enterprise. The smallest installations are pico hydro, below 5 kW.

Since small hydro projects usually have correspondingly small civil construction work and little or no reservoir, they are seen as having a relatively low environmental impact compared to large hydro. [7]

An additional defining feature of small hydro is known as run-of-river, or that the physical impact of the project is relatively minuscule compared to major hydroelectric dams which require a water storage lake. Little water is stored behind the project, if at all, and the river is usually able to continue flowing. [8]

Growth

According to a report by REN21, during 2008 small hydro installations grew by 28% over year 2005 to raise the total world small hydro capacity to 85 gigawatts (GW). Over 70% of this was in China (with 65 GW), followed by Japan (3.5 GW), the United States (3 GW) and India (2 GW). [9] Global growth is expected to be 2.8% annually until the mid-2020s when capacity will be about 150 gigawatts.[ citation needed ]

China planned to electrify a further 10,000 villages between 2005 and 2010 under their China Village Electrification Program, including further investments in small hydro and photovoltaics. [9] By 2010, China had 45,000 small hydro installations, especially in rural areas, producing 160 Twh annually. [10] Over 50% of the world's potential small hydro power was found in Asia; however, the report noted, "It is possible in the future that more small hydropower potential might be identified both on the African and American continents". [11] [12] [13]

In the mountains and rain forests of British Columbia, Canada there are a great many sites suitable for hydro development. However environmental concerns towards large reservoirs after the 1980s halted new dam construction. The solution to coping with increased demand was to offer contracts to independent power producers, who have built 100 run of the river projects under 50 MW. Power production without reservoirs varies dramatically, but older conventional dams retain or release water to average out production though the year. In 2014 these independent producers generated 18,000 GWh from 4,500 MW of capacity. [14]

History

Wood water wheels along riversides may be considered the first examples of "small hydro". [15] Up to the 17th century the efficiency of water wheels neared 70%. However, as the need for power generation increased small hydropower projects were phased out in favor of the large scale dams using newly designed turbines. [16]

Post 20th century environmental doctrine is moving away from large-scale hydropower construction due to the increased awareness of ecological problems associated with dams. For instance, the large artificial lakes often flood habitats and communities and disrupt species reliant on consistent river flow. [16] Examples of previous projects which sought to remove dams include the Restoration of the Elwha River and Un-Dam the Klamath river movement.

Since the 1960's the number of new small hydro projects have declined despite the capacity far exceeding current usage. Despite this trend, some countries, including China, India, and Brazil, are significantly expanding their small hydro capacity in the 21st century. [16]

Generation

Historic Ottenbach Small Hydro with original equipment of 1920 in Ottenbach, Switzerland, still running for guided visits HKO Transmission 02.JPG
Historic Ottenbach Small Hydro with original equipment of 1920 in Ottenbach, Switzerland, still running for guided visits
Hongping Power station, in Hongping Town, Shennongjia, has a design typical for small hydro stations in the western part of China's Hubei Province. Water comes from the mountain behind the station, through the black pipe seen in the photo Hongping-Power-Station-5425.jpg
Hongping Power station, in Hongping Town, Shennongjia, has a design typical for small hydro stations in the western part of China's Hubei Province. Water comes from the mountain behind the station, through the black pipe seen in the photo

Hydroelectric power is the generation of electric power from the movement of water. A hydroelectric facility requires a dependable flow of water and a reasonable height for the water to fall, called the head. In a typical installation, water is fed from a reservoir through a pipe into a turbine. The water flowing through the turbine causes an electrical generator to rotate, converting the motion into electrical energy.

Small hydro may be developed by constructing new facilities or through re-development of existing dams whose primary purpose is flood control, or irrigation. Old hydro sites may be re-developed, sometimes salvaging substantial investment in the installation such as penstock pipe and turbines, or just re-using the water rights associated with an abandoned site. Either of these cost saving advantages can make the return on investment for a small hydro site well worth the use of existing sites.

Brazil is another country which is investing heavily in small hydro. Brazil itself is a leader in hydroelectric generation, the world's third most hydropower installed capacity country at 79 GW, behind the United States at 100 GW, and China in first place with 171 GW. [17] 51 new small hydro projects are, as of 2024, being constructed in Brazil.

Project design

Many companies offer standardized turbine generator packages in the approximate size range of 200 kW to 10 MW. These "water to wire" packages simplify the planning and development of the site since one vendor looks after most of the equipment supply. Because non-recurring engineering costs are minimized and development cost is spread over multiple units, the cost of such package systems is reduced. While synchronous generators capable of isolated plant operation are often used, small hydro plants connected to an electrical grid system can use economical induction generators to further reduce installation cost and simplify control and operation.

Small "run of the river" projects do not have a conventional dam with a reservoir, only a weir to form a headpond for diversion of inlet water to the turbine. Unused water simply flows over the weir and the headpond may only be capable of a single day's storage, not enough for dry summers or frozen winters when generation may come to a halt. A preferred scenario is to have the inlet in an existing lake.

Modular “micro hydrokinetic” systems have been developed for irrigation canals. [18] "Irrigation districts across the U.S. have installed power plants at diversion points and in-canal drops, which are traditionally used for flow measurement, to stabilize upstream heads and to dissipate energy where there is significant elevation change throughout the canal system." [19]

Countries like India and China have policies in favor of small hydro, and the regulatory process allows for building dams and reservoirs. In North America and Europe the regulatory process is too long and expensive to consider having a dam and a reservoir for a small project.

Small hydro projects usually have faster environmental and licensing procedures, and since the equipment is usually in serial production, standardized and simplified, and the civil works construction is also reduced, the projects may be developed very rapidly. The physically smaller size of equipment makes it easier to transport to remote areas without good road or rail access.

One measure of decreased environmental impact with lakes and reservoirs depends on the balance between stream flow and power production. Reducing water diversions helps the river's ecosystem, but reduces the hydro system's return on Investment (ROI). The hydro system design must strike a balance to maintain both the health of the stream and the economics.

Part of the balance between a small hydro project's return on investment and environmental concern is the proximity of the project to the national power grid. The more isolated a small hydro project is the more cost effective its construction will be. [20]

Advantages and Disadvantages

The primary advantages of small hydro development include low cost to build, environmental justice, and ability to remain disconnected from centralized power grids.

Rural or isolated areas that are expensive to connect to national power grids are where most small hydro developments are made. For instance, rural areas in India or other countries that have flowing water regimes utilize small hydro to provide a renewable source of energy without connection to the national grid. [21] Additionally, in communities which are geographically isolated from national power grids small hydro projects provide the greatest reduction in green house gas emissions. [22]

For investors, environmentalists, and policy makers small hydro projects are considered most viable when there is little ecological impact and projected profit after construction. [23] It is shown to be relatively easy for stakeholders to greenlight small hydro developments if these conditions are met, even to a slight degree. [23]

An example of a small hydro power plant, Sveta Petka. Small hydro power plant "Sveta Petka".IMG 0013.jpg
An example of a small hydro power plant, Sveta Petka.

A final noted advantage of small hydro over larger hydropower developments or fossil fuel plants is an element of environmental justice. In a number of communities which lack essential electricity access small hydro offers a reliable and clean source of electricity. [24] Small hydro projects do not normally require significant government assistance. Gaps in governance allow small hydro projects to be built and which provide local power to local communities. [24]

Disadvantages of small hydro do exist primarily in habitat alteration and potential cost increase.

Some of the disadvantages of small hydro come in the form of how the running water system is disturbed. Within run-of-river design projects, the greatest harm for water systems are flow regime alteration, loss of river cohesion and connectivity, and habitat degradation effecting fish and macroinvertebrates primarily. [25]

Although the cost of small hydro projects are generally far lower than large-scale hydroelectric systems, there is a cost to construction. Considering this, if a small hydro project proves to be uneconomical it will have an outsized budget expenditure relative to large projects which run over-budget. [26]

Sample list of small installations worldwide

Africa

Asia

Europe

North America

See also

Related Research Articles

<span class="mw-page-title-main">Hydropower</span> Power generation via movement of water

Hydropower, also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of a water source to produce power. Hydropower is a method of sustainable energy production. Hydropower is now used principally for hydroelectric power generation, and is also applied as one half of an energy storage system known as pumped-storage hydroelectricity.

<span class="mw-page-title-main">Pumped-storage hydroelectricity</span> Electric energy storage system

Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power. Although the losses of the pumping process make the plant a net consumer of energy overall, the system increases revenue by selling more electricity during periods of peak demand, when electricity prices are highest. If the upper lake collects significant rainfall or is fed by a river then the plant may be a net energy producer in the manner of a traditional hydroelectric plant.

<span class="mw-page-title-main">Hydroelectricity</span> Electricity generated by hydropower

Hydroelectricity, or hydroelectric power, is electricity generated from hydropower. Hydropower supplies one sixth of the world's electricity, almost 4,500 TWh in 2020, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel-powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted.

<span class="mw-page-title-main">Micro hydro</span> Hydroelectric power generation of 5 to 100 kW of electricity

Micro hydro is a type of hydroelectric power that typically produces from 5 kW to 100 kW of electricity using the natural flow of water. Installations below 5 kW are called pico hydro. These installations can provide power to an isolated home or small community, or are sometimes connected to electric power networks, particularly where net metering is offered. There are many of these installations around the world, particularly in developing nations as they can provide an economical source of energy without the purchase of fuel. Micro hydro systems complement solar PV power systems because in many areas water flow, and thus available hydro power, is highest in the winter when solar energy is at a minimum. Micro hydro is frequently accomplished with a pelton wheel for high head, low flow water supply. The installation is often just a small dammed pool, at the top of a waterfall, with several hundred feet of pipe leading to a small generator housing. In low head sites, generally water wheels and Archimedes' screws are used.

<span class="mw-page-title-main">Run-of-the-river hydroelectricity</span> Hydroelectric power station

Run-of-river hydroelectricity (ROR) or run-of-the-river hydroelectricity is a type of hydroelectric generation plant whereby little or no water storage is provided. Run-of-the-river power plants may have no water storage at all or a limited amount of storage, in which case the storage reservoir is referred to as pondage. A plant without pondage is subject to seasonal river flows, so the plant will operate as an intermittent energy source. Conventional hydro uses reservoirs, which regulate water for flood control, dispatchable electrical power, and the provision of fresh water for agriculture.

<span class="mw-page-title-main">Pico hydro</span> Hydroelectric power generation under 5 kW

Pico hydro is a term used for hydroelectric power generation of under 5 kW. These generators have proven to be useful in small, remote communities that require only a small amount of electricity – for example, to power one or two fluorescent light bulbs and a TV or radio in 50 or so homes. Even smaller turbines of 200–300 W may power a single home with a drop of only 1 metre (3.3 ft). Pico-hydro setups typically are run-of-stream, meaning that a reservoir of water is not created, only a small weir is common, pipes divert some of the flow, drop this down a gradient, and through the turbine before being exhausted back to the stream.

<span class="mw-page-title-main">Renewable energy in Honduras</span> Overview of the use of renewable energy in Honduras

In Honduras, there is an important potential of untapped indigenous renewable energy resources. Due to the variability of high oil prices and declining renewable infrastructure costs, such resources could be developed at competitive prices.

The Baihetan Dam is a large hydroelectric dam on the Jinsha River, an upper stretch of the Yangtze River in Sichuan and Yunnan provinces, in southwest China. The dam is a 289-meter-tall double-curvature arch dam with a crest elevation of 827 m, and a width of 72 m at the base and 13 m at the crest. It is considered to be the last large hydropower project in China after a series of projects starting with the Three Gorges Dam. It is also the second largest hydropower plant in the world. The hydropower station is equipped with 16 hydro-generating units each having a capacity of 1 million kilowatts, the world's largest turbines. All hydro-generating units of the Baihetan hydropower station became fully operational on 20 December 2022.

According to the International Hydropower Association, Canada is the fourth largest producer of hydroelectricity in the world in 2021 after the United States, Brazil, and China. In 2019, Canada produced 632.2 TWh of electricity with 60% of energy coming from Hydroelectric and Tidal Energy Sources).

<span class="mw-page-title-main">Hydroelectric power in the United States</span>

Hydroelectricity is, as of 2019, the second-largest renewable source of energy in both generation and nominal capacity in the United States. In 2021, hydroelectric power produced 31.5% of the total renewable electricity, and 6.3% of the total U.S. electricity.

<span class="mw-page-title-main">Renewable energy debate</span>

Policy makers often debate the constraints and opportunities of renewable energy.

<span class="mw-page-title-main">Hydroelectric power in India</span>

India is 5th globally for installed hydroelectric power capacity. As of 31 March 2020, India's installed utility-scale hydroelectric capacity was 46,000 MW, or 12.3% of its total utility power generation capacity. Additional smaller hydroelectric power units with a total capacity of 4,683 MW have been installed. India's hydroelectric power potential is estimated at 148,700 MW at 60% load factor. In the fiscal year 2019–20, the total hydroelectric power generated in India was 156 TWh with an average capacity factor of 38.71%.

Kikagati Hydroelectric Power Station, also referred to as Kikagati Power Station, is a 15.57 MW (20,880 hp) hydroelectric power station, in Uganda.

<span class="mw-page-title-main">Energy in Bhutan</span>

Energy in Bhutan has been a primary focus of development in the kingdom under its Five-Year Plans. In cooperation with India, Bhutan has undertaken several hydroelectric projects whose output is traded between the countries. Though Bhutan's many hydroelectric plants provide energy far in excess of its needs in the summer, dry winters and increased fuel demand makes the kingdom a marginal net importer of energy from India.

<span class="mw-page-title-main">Hydroelectricity in the United Kingdom</span>

As of 2018, hydroelectric power stations in the United Kingdom accounted for 1.87 GW of installed electrical generating capacity, being 2.2% of the UK's total generating capacity and 4.2% of UK's renewable energy generating capacity. This includes four conventional hydroelectric power stations and run-of-river schemes for which annual electricity production is approximately 5,000 GWh, being about 1.3% of the UK's total electricity production. There are also four pumped-storage hydroelectric power stations providing a further 2.8 GW of installed electrical generating capacity, and contributing up to 4,075 GWh of peak demand electricity annually.

<span class="mw-page-title-main">Hydroelectricity in Turkey</span>

Hydroelectricity is a major source of electricity in Turkey, due to its mountainous landscape and many rivers. The country's main river basins are the Euphrates and Tigris. Over 700 hydropower plants have been built, and they make up about 30% of the country's electricity generating capacity. Annual generation varies greatly, and in rainy years lots of hydroelectric power can be generated. Government policies have generally supported building dams, but some are controversial in neighbouring countries, and some raise concerns about damage to the environment and wildlife.

Thailand has set targets and policies for the development of its energy sector for 2035, with priority being given to indigenous renewable energy resources, including hydropower.

<span class="mw-page-title-main">Renewable energy in Turkey</span>

Renewables supply a quarter of energy in Turkey, including heat and electricity. Some houses have rooftop solar water heating, and hot water from underground warms many spas and greenhouses. In parts of the west hot rocks are shallow enough to generate electricity as well as heat. Wind turbines, also mainly near western cities and industry, generate a tenth of Turkey’s electricity. Hydropower, mostly from dams in the east, is the only modern renewable energy which is fully exploited. Hydropower averages about a fifth of the country's electricity, but much less in drought years. Apart from wind and hydro, other renewables; such as geothermal, solar and biogas; together generated almost a tenth of Turkey’s electricity in 2022. Türkiye has ranked 5th in Europe and 12th in the world in terms of installed capacity in renewable energy. The share of renewables in Türkiye’s installed power reached to 54% at the end of 2022.

<span class="mw-page-title-main">Jatobá Hydroelectric Power Plant</span> Dam in Itaituba, Pará

The Jatobá Hydroelectric Power Plant is a planned hydroelectric power plant and dam on the Tapajós river in the state of Pará, Brazil. As of 2017 the project was suspended.

References

  1. Crettenand, N. (2012). The facilitation of mini and small hydropower in Switzerland: shaping the institutional framework. With a particular focus on storage and pumped-storage schemes (Thesis). École Polytechnique Fédérale de Lausanne. p. 266. doi:10.5075/epfl-thesis-5356. S2CID   36519663. PhD Thesis N° 5356.
  2. Paish, Oliver (2002-12-01). "Small hydro power: technology and current status". Renewable and Sustainable Energy Reviews. 6 (6): 537–556. doi:10.1016/S1364-0321(02)00006-0. ISSN   1364-0321.
  3. http://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf pg17
  4. "Hydroelectric Power in California". www.energy.ca.gov. Retrieved 2019-04-07.
  5. "Power Sector" (PDF). International Renewable Energy Agency. June 2012. Retrieved 2018-12-16.
  6. "Small Hydro | Ministry of New & Renewable Energy | Government of India". mnre.gov.in. Archived from the original on 2018-02-20.
  7. "Small Hydropower Systems" US Department of Energy https://www.nrel.gov/docs/fy01osti/29065.pdf
  8. Paish, Oliver (2002-12-01). "Small hydro power: technology and current status". Renewable and Sustainable Energy Reviews. 6 (6): 537–556. doi:10.1016/S1364-0321(02)00006-0. ISSN   1364-0321.
  9. 1 2 Renewables Global Status Report 2006 Update Archived 2007-06-14 at the Wayback Machine , REN21 , published 2006, accessed 2007-05-16
  10. https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-HYDROPOWER.pdf pg12
  11. "World Small Hydro Power Development Report 2016". ICSHP. Retrieved 29 April 2015.
  12. "UNIDO, ICSHP Launch Small Hydropower Knowledge Sharing Portal". Sustainable Energy Policy and Practice. Retrieved 29 April 2015.
  13. "Small Hydropower, a promising technology for rural electrification". www.energias-renovables.com. Retrieved 29 April 2015.
  14. "About Independent Power Projects". Archived from the original on 6 February 2016. Retrieved 9 March 2017.
  15. Jahren, Per; Sui, Tongbo (2016-11-22). How Water Influences Our Lives. Springer. ISBN   978-981-10-1938-8.
  16. 1 2 3 Paish, Oliver (2002-12-01). "Small hydro power: technology and current status". Renewable and Sustainable Energy Reviews. 6 (6): 537–556. doi:10.1016/S1364-0321(02)00006-0. ISSN   1364-0321.
  17. Martins, Douglas Eduardo Costa; Seiffert, Mari Elizabete Bernardini; Dziedzic, Maurício (2013-12-01). "The importance of clean development mechanism for small hydro power plants". Renewable Energy. 60: 643–647. doi:10.1016/j.renene.2013.06.021. ISSN   0960-1481.
  18. Noon, Chris (2019-09-05). "Canal Plus: These Tiny Turbines Can Turn Man-Made Waterways Into Power Plants". GE Reports. Retrieved 2019-09-28.
  19. "Capturing Untapped Potential: Small Hydro in Irrigation Canals". Hydro Review. 2017-10-01. Retrieved 2019-09-28.
  20. Kuriqi, Alban; Pinheiro, António N.; Sordo-Ward, Alvaro; Bejarano, María D.; Garrote, Luis (2021-05-01). "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition". Renewable and Sustainable Energy Reviews. 142: 110833. doi: 10.1016/j.rser.2021.110833 . ISSN   1364-0321.
  21. Mishra, Mukesh Kumar; Khare, Nilay; Agrawal, Alka Bani (2015-11-01). "Small hydro power in India: Current status and future perspectives". Renewable and Sustainable Energy Reviews. 51: 101–115. doi:10.1016/j.rser.2015.05.075. ISSN   1364-0321.
  22. Martins, Douglas Eduardo Costa; Seiffert, Mari Elizabete Bernardini; Dziedzic, Maurício (2013-12-01). "The importance of clean development mechanism for small hydro power plants". Renewable Energy. 60: 643–647. doi:10.1016/j.renene.2013.06.021. ISSN   0960-1481.
  23. 1 2 Urošević, Branka Gvozdenac; Marinović, Budimirka (2021-07-01). "Ranking construction of small hydro power plants using multi-criteria decision analysis". Renewable Energy. 172: 1174–1183. doi:10.1016/j.renene.2021.03.115. ISSN   0960-1481.
  24. 1 2 Patel, Alan P. Diduck, Richard Johnson, Esther Edwards, A. John Sinclair, James Gardner, Kirit (2021), "Small hydro and environmental justice: Lessons from the Kullu District of Himachal Pradesh", Advancing Environmental Justice for Marginalized Communities in India, Routledge, doi:10.4324/9781003141228-7, ISBN   978-1-003-14122-8 , retrieved 2024-02-23{{citation}}: CS1 maint: multiple names: authors list (link)
  25. Kuriqi, Alban; Pinheiro, António N.; Sordo-Ward, Alvaro; Bejarano, María D.; Garrote, Luis (2021-05-01). "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition". Renewable and Sustainable Energy Reviews. 142: 110833. doi: 10.1016/j.rser.2021.110833 . ISSN   1364-0321.
  26. Martins, Douglas Eduardo Costa; Seiffert, Mari Elizabete Bernardini; Dziedzic, Maurício (2013-12-01). "The importance of clean development mechanism for small hydro power plants". Renewable Energy. 60: 643–647. doi:10.1016/j.renene.2013.06.021. ISSN   0960-1481.
  27. A Satish (1 September 2015). "Meenvallam Power Project's Revenue Touches Rs 3.24-cr". The New Indian Express . Retrieved 25 August 2021.
  28. "IRTC - Meenvallom Small Hydro Project" . Retrieved 9 March 2017.
  29. "Bario Asal Micro Hydro.. 4 years on and still going strong". 15 October 2012. Retrieved 9 March 2017.
  30. "Ifugao Ambangal Minihydro Power Plant". What We Do. Global Sustainable Electricity Partnership. Retrieved July 22, 2020.
  31. Colina, Antonio (October 6, 2019). "Japanese firm to build biomass power project in Butuan". MindaNews . Retrieved July 22, 2020.
  32. "Balongbong Mini Hydro Power Plant". Small Power Utilities Group, National Power Corporation. August 7, 2018. Retrieved July 22, 2020.
  33. "2013 Accomplishment Report" (PDF). Small Power Utilities Group, National Power Corporation. Archived from the original (PDF) on 4 March 2016. Retrieved 15 September 2015.
  34. "JICA, DOE inaugurate mini hydropower plant to support electricity in Ifugao, rice terraces conservation efforts". Japan International Cooperation Agency. July 14, 2015. Retrieved July 22, 2020.
  35. "The Inaugural Commission of the 2.4 MW Euro Hydro Power Plant". Euro Hydro Power (Asia) Holdings, Inc. Retrieved July 22, 2020.
  36. Lectura, Lenie (February 3, 2016). "Epower to rehab mini hydro plant in Aurora". BusinessMirror . Retrieved July 22, 2020.
  37. Ulgado, Andresito. "Hydropower Roadmap" (PDF). Renewable Energy Management Bureau, Department of Energy . Retrieved July 22, 2020.
  38. "The Green Valleys". Thegreenvalleys.org. 2013-04-07. Retrieved 2013-10-16.
  39. "UK | Wales | Mid Wales | Beacons green project scoops £20k". BBC News. 2008-10-17. Retrieved 2013-10-16.
  40. "biggreenchallenge.org.uk". biggreenchallenge.org.uk. Archived from the original on 2013-10-03. Retrieved 2013-10-16.