Anthropization

Last updated
An example of advanced anthropization: the cultivation of rice in terraces in Vietnam Landscape in Sa Pa (Vietnam).jpg
An example of advanced anthropization: the cultivation of rice in terraces in Vietnam

In geography and ecology, anthropization is the conversion of open spaces, landscapes, and natural environments by human action. [1]

Geography The science that studies the terrestrial surface, the societies that inhabit it and the territories, landscapes, places or regions that form it

Geography is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of the Earth and planets. The first person to use the word γεωγραφία was Eratosthenes. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.

Ecology Scientific study of the relationships between living organisms and their environment

Ecology is the branch of biology which studies the interactions among organisms and their environment. Objects of study include interactions of organisms with each other and with abiotic components of their environment. Topics of interest include the biodiversity, distribution, biomass, and populations of organisms, as well as cooperation and competition within and between species. Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living components of their environment. Ecosystem processes, such as primary production, pedogenesis, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. These processes are sustained by organisms with specific life history traits. Biodiversity means the varieties of species, genes, and ecosystems, enhances certain ecosystem services.

Natural environment All living and non-living things occurring naturally, generally on Earth

The natural environment encompasses all living and non-living things occurring naturally, meaning in this case not artificial. The term is most often applied to the Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

Contents

Anthropic erosion is the process of human action degrading terrain and soil.

Terrain Vertical and horizontal dimension and shape of land surface

Terrain or relief involves the vertical and horizontal dimensions of land surface. The term bathymetry is used to describe underwater relief, while hypsometry studies terrain relative to sea level. The Latin word terra means "earth."

Soil mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Earth's body of soil, called the pedosphere, has four important functions:

An area may be classified as anthropized even though it looks natural, such as grasslands that have been deforested by humans. It can be difficult to determine how much a site has been anthropized in the case of urbanization because one must be able to estimate the state of the landscape before significant human action.[ citation needed ]

Grassland areas where the vegetation is dominated by grasses (Poaceae)

Grasslands are areas where the vegetation is dominated by grasses (Poaceae); however, sedge (Cyperaceae) and rush (Juncaceae) families can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica. Grasslands are found in most ecoregions of the Earth. For example, there are five terrestrial ecoregion classifications (subdivisions) of the temperate grasslands, savannas, and shrublands biome (ecosystem), which is one of eight terrestrial ecozones of the Earth's surface.

Deforestation removal of forest and conversion of the land to non-forest use

Deforestation, clearance, or clearing is the removal of a forest or stand of trees from land which is then converted to a non-forest use. Deforestation can involve conversion of forest land to farms, ranches, or urban use. The most concentrated deforestation occurs in tropical rainforests. About 31% of Earth's land surface is covered by forests.

Urbanization longterm population movements (shift) from rural to urban areas;gradual increase in the proportion of people living in urban areas, and the ways in which each society adapts to the change;process by which towns and cities are formed and become larger

Urbanization refers to the population shift from rural areas to urban areas, the gradual increase in the proportion of people living in urban areas, and the ways in which each society adapts to this change. It is predominantly the process by which towns and cities are formed and become larger as more people begin living and working in central areas. Although the two concepts are sometimes used interchangeably, urbanization should be distinguished from urban growth: urbanization is "the proportion of the total national population living in areas classed as urban", while urban growth refers to "the absolute number of people living in areas classed as urban". The United Nations projected that half of the world's population would live in urban areas at the end of 2008. It is predicted that by 2050 about 64% of the developing world and 86% of the developed world will be urbanized. That is equivalent to approximately 3 billion urbanites by 2050, much of which will occur in Africa and Asia. Notably, the United Nations has also recently projected that nearly all global population growth from 2017 to 2030 will be absorbed by cities, about 1.1 billion new urbanites over the next 13 years.

Cause

The earliest known stages of anthropization can be found as early as the Neolithic era and the basic farmland created in that time. [2] With the continually-growing population of humans, the land that the Earth provides has been appropriated over the years. The ecological footprint created by anthropization is continually growing despite efficiency and technique improvements made in anthropization..

Whether anthropized or not, all land seldom a few locations has been claimed. Outside of the largely inhospitable Arctic and Antarctic circles and large portions of other uninhabitable landscapes, much of the globe has been used or altered in some direct way by humans. Land has been appropriated for many different reasons, but ultimately the outcome is typically a short-term benefit for humans. An area is anthropized is some way to make land available for housing, to harvest the resources, to create space for some anthropological reason, or many other possibilities.

Territorial claims in Antarctica Wikimedia list article

Seven sovereign states maintain a territorial claim on eight territories in Antarctica. These countries have tended to place their Antarctic scientific observation and study facilities within their respective claimed territories. A number of such facilities are located nowhere near their country's sector, however. Many nations such as Russia and the US have no claim anywhere in Antarctica, yet have large research facilities within the sectors of foreign countries.

Arctic Circle Boundary of the Arctic

The Arctic Circle is one of the two polar circles and the most northerly of the five major circles of latitude as shown on maps of Earth. It marks the northernmost point at which the centre of the noon sun is just visible on the December solstice and the southernmost point at which the centre of the midnight sun is just visible on the June solstice. The region north of this circle is known as the Arctic, and the zone just to the south is called the Northern Temperate Zone.

Antarctic Circle Boundary of the Antarctic

The Antarctic Circle is the most southerly of the five major circles of latitude that mark maps of the Earth. The region south of this circle is known as the Antarctic, and the zone immediately to the north is called the Southern Temperate Zone. South of the Antarctic Circle, the sun is above the horizon for 24 continuous hours at least once per year and the centre of the sun is below the horizon for 24 continuous hours at least once per year ; this is also true within the equivalent polar circle in the Northern Hemisphere, the Arctic Circle.

Processes and effects

An example of land that has been appropriated for cultivation in Hainan, China. Farm in Hainan 01.jpg
An example of land that has been appropriated for cultivation in Hainan, China.

Agriculture

The root of many early forms of civilization, agriculture has been a primary reason for anthropization. To cultivate food or breed animals, humans must alter land—till soil or build structures—to facilitate agriculture. This can lead to soil erosion and pollution (pesticides, greenhouse gas emissions, etc.), and subsequently habitat fragmentation and overall an increased ecological footprint. Agriculture and industry often overlap, and industry produces many of these effects too.

Agriculture Cultivation of plants and animals to provide useful products

Agriculture is the science and art of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Pigs, sheep and cattle were domesticated over 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. Industrial agriculture based on large-scale monoculture in the twentieth century came to dominate agricultural output, though about 2 billion people still depended on subsistence agriculture into the twenty-first.

Soil erosion washing or blowing away of the top layer of soil

Soil erosion is the displacement of the upper layer of soil, one form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, animals, and humans. In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolean) erosion, zoogenic erosion, and anthropogenic erosion. Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil. The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks.

Pollution introduction of contaminants into the natural environment that cause adverse change

Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of chemical substances or energy, such as noise, heat or light. Pollutants, the components of pollution, can be either foreign substances/energies or naturally occurring contaminants. Pollution is often classed as point source or nonpoint source pollution. In 2015, pollution killed 9 million people in the world.

Urban development

Especially with approximately 7.5 Billion humans inhabiting the Earth, [3] this typically aligns with an increase in residences worldwide. Over the years, humans have built on land to meet their needs and wants. These actions range from small villages to massive factories, water parks, and apartments. Urbanization and development of human residences can significantly affect the environment. Not only does the physical space of buildings fragment habitats and possibly endanger species, but it fundamentally alters the habitat for any other living being. For some species, this effect can be inconsequential, but for many this can have a dramatic impact. The biosphere is very much interconnected, and this means that if one organism is affected, then as a result the other organisms within this ecosystem and food chain are also affected.

The Athabasca oil sands are an example of anthropization as a result of the harvest and transport of a non-renewable resource, oil sands. Athabasca oil sands.jpg
The Athabasca oil sands are an example of anthropization as a result of the harvest and transport of a non-renewable resource, oil sands.

As well, within the last century, any urbanized area requires roads for transportation. This transportation is a continued source of pollution, and the roads can be a source of soil erosion.

Industry and technology

To support humans, industrial buildings and processes are apparently essential. Urban development and agriculture require that people produce, refined, or construct many things. Key to this is that factories require that people gather the materials they need to create a product. The wide range of products in this anthropological age use a plethora of substances that must be harvested or produced. Many of these materials are non-renewable (e.g., fossil fuel, metal ores, etc.) and the harvest of these results in relatively permanent anthropization. For resources that depend on in high quantity, this can also mean temporary depletion or damage to the source of the resource (e.g., depletion or pollution of fresh water reserves, [4] improper or inefficient silviculture, etc.). Even sustainable or renewable industrial anthropization still affects the environment. While the resource in question may not be in jeopardy, the harvest and processing can still change and damage the environment.

Science

Anthropization can also be a result of scientific endeavours. This can manifest as construction of structures to aid in scientific discovery and observation. This can range from structures such as observatories, or on the opposite scale the Large Hadron Collider. These and many other things are built and used to enhance knowledge of sciences. They do however require space and energy.

Energy

To power the ever-growing human race, energy is needed. Power-harvesting structures are built to harness energy, such as dams, windmills, and nuclear reactors. These sources of energy ultimately fuel the rest of anthropological activity and are essential in this way. However many of these methods have consequences. With dams, construction aside, they can cause flooding, habitat fragmentation, and other effects. With nuclear reactors, they have a lasting effect in that typically a lifespan of one of these is around 50 years [5] and afterwards the nuclear waste must be dealt with, and the structure itself must be shut down and cannot be used further. To safely dispose of this even low-level waste can take hundreds of years, ranging upwards with increased radioactivity. [6] To produce and as a result of this production of energy, it requires a lot of anthropized land.

Evolution of anthropization

An example of ancient anthropization; Giza pyramid complex, Egypt. All pyramids of Giza panorama 2.jpg
An example of ancient anthropization; Giza pyramid complex, Egypt.

Changes in population directly effect anthropological impact—but changes in technology and knowledge have greatly changed anthropization throughout the Holocene. The tools and methods that humans use to anthropize have changed drastically. For examples, the great pyramids in Egypt were not constructed by some large machine, but instead by thousands of humans. They were still able to build massive monuments, but the efficiency of their efforts and environmental damage is much different than today. This shows that the environmental effect of modern anthropization is generally greater, not just because of the increase in population. Pollution and loss of biodiversity in Egypt was largely natural, not man-made, and anthropization existed on a much lower level.

As the human population of Earth increase, this anthropization will continue to evolve.

See also

Related Research Articles

Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources. Use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource, the more a resource is depleted the more the value of the resource increases.

Non-renewable resource a resource that does not renew itself at a sufficient rate for sustainable economic extraction in meaningful human timeframes

A non-renewable resource is a resource of economic value that cannot be readily replaced by natural means at a quick enough pace to keep up with consumption. An example is carbon-based fossil fuel. The original organic material, with the aid of heat and pressure, becomes a fuel such as oil or gas. Earth minerals and metal ores, fossil fuels and groundwater in certain aquifers are all considered non-renewable resources, though individual elements are always conserved.

Sustainable agriculture farming relying on ecosystem services for maintenance

Sustainable agriculture is farming in sustainable ways based on an understanding of ecosystem services, the study of relationships between organisms and their environment.

Urban ecology The study of the relation of living organisms with each other and their surroundings in the context of an urban environment.

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in the context of an urban environment. The urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape dissimilar to most previously studied environments in the field of ecology.

Ecological footprint

The ecological footprint measures human demand on nature, i.e., the quantity of nature it takes to support people or an economy. It tracks this demand through an ecological accounting system. The accounts contrast the biologically productive area people use for their consumption to the biologically productive area available within a region or the world. In short, it is a measure of human impact on Earth's ecosystem and reveals the dependence of the human economy on natural capital.

Environmental disaster disaster to the natural environment due to human activity

An environmental disaster or ecological disaster is a catastrophic event regarding the environment due to human activity. This distinguishes it from the concept of a natural disaster. It is also distinct from intentional acts of war such as nuclear bombings.

Soil fertility Ability of a soil to sustain agricultural plant growth

Soil fertility refers to the ability of a soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. A fertile soil has the following properties:

Human impact on the environment human impacts on environment

Human impact on the environment or anthropogenic impact on the environment includes changes to biophysical environments and ecosystems, biodiversity, and natural resources caused directly or indirectly by humans, including global warming, environmental degradation, mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Modifying the environment to fit the needs of society is causing severe effects, which become worse as the problem of human overpopulation continues. Some human activities that cause damage to the environment on a global scale include human reproduction, overconsumption, overexploitation, pollution, and deforestation, to name but a few. Some of the problems, including global warming and biodiversity loss pose an existential risk to the human race, and overpopulation causes those problems.

Historical ecology

Historical ecology is a research program that focuses on the interactions between humans and their environment over long-term periods of time, typically over the course of centuries. In order to carry out this work, historical ecologists synthesize long-series data collected by practitioners in diverse fields. Rather than concentrating on one specific event, historical ecology aims to study and understand this interaction across both time and space in order to gain a full understanding of its cumulative effects. Through this interplay, humans adapt to and shape the environment, continuously contributing to landscape transformation. Historical ecologists recognize that humans have had world-wide influences, impact landscape in dissimilar ways which increase or decrease species diversity, and that a holistic perspective is critical to be able to understand that system.

Environmental vegetarianism

Environmental vegetarianism is the practice of vegetarianism or eating a plant-based diet, based on the indications that animal-based industries are environmentally destructive or unsustainable. The primary environmental concerns with animal products are pollution—including greenhouse gas emissions (GHG)—deforestation, and the use of resources such as fossil fuels, water, and land.

Environmental issues in Nepal include pollution, overpopulation, deforestation, energy and species conservation.

Surface runoff The flow of excess stormwater, meltwater, or water from other sources over the Earths surface

Surface runoff is the flow of water that occurs when excess stormwater, meltwater, or other sources flows over the Earth's surface. This might occur because soil is saturated to full capacity, because rain arrives more quickly than soil can absorb it, or because impervious areas send their runoff to surrounding soil that cannot absorb all of it. Surface runoff is a major component of the water cycle. It is the primary agent in soil erosion by water.

African environmental issues are caused by anthropogenic effects on the African natural environment and have major impacts on humans and nearly all forms of endemic life. Issues include desertification, problems with access to safe water supply, population explosion and fauna depletion. These issues are ultimately linked to over-population in Africa, as well as on a global scale. Nearly all of Africa's environmental problems are geographically variable and human induced, though not necessarily by Africans.

Deforestation during the Roman period was a result of the geographical expansion of the Roman Empire, with its increased population, large-scale agriculture, and unprecedented economic development. Roman expansion marks the transition in the Mediterranean from prehistory to the historical period beginning around 500 BC. Earth sustained a few million people 8,000 years ago and was still fundamentally pristine, but Rome drove human development in Western Europe and was a leading contributor of the deforestation around the Mediterranean.

Sustainable metrics and indices are measures of sustainability, and attempt to quantify beyond the generic concept. Though there are disagreements among those from different disciplines, these disciplines and international organizations have each offered measures or indicators of how to measure the concept.

Index of environmental articles

The natural environment, commonly referred to simply as the environment, includes all living and non-living things occurring naturally on Earth.

Ecological farming objective of sustainable agriculture

Ecological farming is recognised as the high-end objective among the proponents of sustainable agriculture. Ecological farming is not the same as organic farming, however there are many similarities and they are not necessarily incompatible. Ecological farming includes all methods, including organic, which regenerate ecosystem services like: prevention of soil erosion, water infiltration and retention, carbon sequestration in the form of humus, and increased biodiversity. Many techniques are used including no till, multispecies cover crops, strip cropping, terrace cultivation, shelter belts, pasture cropping etc.

The following outline is provided as an overview of and topical guide to environmentalism:

Environmental issues in Georgia

Situated in the South Caucasus Region bordered by the Black Sea to the North the Russian Federation to the North, Azerbaijan to the East, Turkey to the Southwest and Armenia to the South, Georgia is a small country supplied with profitable natural resources, heavenly scenes, copious water assets, rich living spaces, and ecosystems that are of local and worldwide significance.

References

  1. "Anthropization - Hypergéo". www.hypergeo.eu. Retrieved 2016-05-17.
  2. "Anthropization - Hypergéo". www.hypergeo.eu. Retrieved 2016-05-17.
  3. "World Population Clock: 7.5 Billion People (2017) - Worldometers". www.worldometers.info. Retrieved 2017-01-30.
  4. "How Water Sources are Being Depleted". PureDrinkableWater. Retrieved 2017-01-31.
  5. Voosen, Paul. "How Long Can a Nuclear Reactor Last?". Scientific American. Retrieved 2017-01-31.
  6. Miller, G. Tyler, David F. Hackett, and Carl Eric Wolfe. Living in the Environment. 4th ed. Toronto: Nelson Education, 2017. 454-55. Print.