Sustainability metrics and indices

Last updated

Sustainability metrics and indices are measures of sustainability, and attempt to quantify beyond the generic concept. Though there are disagreements among those from different disciplines (and influenced by different political beliefs about the nature of the good society), these disciplines and international organizations have each offered measures or indicators of how to measure the concept.

Sustainability process of maintaining change in a balanced fashion

Sustainability is the process of maintaining change in a balanced environment, in which the exploitation of resources, the direction of investments, the orientation of technological development and institutional change are all in harmony and enhance both current and future potential to meet human needs and aspirations. For many in the field, sustainability is defined through the following interconnected domains or pillars: environment, economic and social, which according to Fritjof Capra is based on the principles of Systems Thinking. Sub-domains of sustainable development have been considered also: cultural, technological and political. While sustainable development may be the organizing principle for sustainability for some, for others, the two terms are paradoxical. Sustainable development is the development that meets the needs of the present without compromising the ability of future generations to meet their own needs. Brundtland Report for the World Commission on Environment and Development (1987) introduced the term of sustainable development.

An economic indicator is a statistic about an economic activity. Economic indicators allow analysis of economic performance and predictions of future performance. One application of economic indicators is the study of business cycles. Economic indicators include various indices, earnings reports, and economic summaries: for example, the unemployment rate, quits rate, housing starts, consumer price index, consumer leverage ratio, industrial production, bankruptcies, gross domestic product, broadband internet penetration, retail sales, stock market prices, and money supply changes.

Contents

While sustainability indicators, indices and reporting systems gained growing popularity in both the public and private sectors, their effectiveness in influencing actual policy and practices often remains limited.

Metrics and indices

Various ways of operationalizing or measuring sustainability have been developed. During the last 10 years[ when? ] there has been an expansion of interest in SDI systems, both in industrialized and, albeit to a lesser extent, in developing countries. SDIs are seen as useful in a wide range of settings, by a wide range of actors: international and intergovernmental bodies; national governments and government departments; economic sectors; administrators of geographic or ecological regions; communities; nongovernmental organizations; and the private sector.

SDI processes are underpinned and driven by the increasing need for improved quality and regularly produced information with better spatial and temporal resolution. Accompanying this need is the requirement, brought in part by the information revolution, to better differentiate between information that matters in any given policy context versus information that is of secondary importance or irrelevant.

A large and still growing number of attempts to create aggregate measures of various aspects of sustainability created a stable of indices that provide a more nuanced perspective on development than economic aggregates such as GDP. Some of the most prominent of these include the Human Development Index (HDI) of the United Nations Development Programme (UNDP); the Ecological footprint of Global Footprint Network and its partner organizations; the Environmental Sustainability Index  (ESI) and the pilot Environmental Performance Index  (EPI) reported under the World Economic Forum  (WEF); or the Genuine Progress Index  (GPI) calculated at the national or sub-national level. Parallel to these initiatives, political interest in producing a green GDP that would take at least the cost of pollution and natural capital depletion into account has grown, even if implementation is held back by the reluctance of policymakers and statistical services arising mostly from a concern about conceptual and technical challenges.

Human Development Index composite statistic of life expectancy, education, and income indices

The Human Development Index (HDI) is a statistic composite index of life expectancy, education, and per capita income indicators, which are used to rank countries into four tiers of human development. A country scores a higher HDI when the lifespan is higher, the education level is higher, and the GNI (PPP) per capita is higher. It was developed by Pakistani economist Mahbub ul Haq, with help from Gustav Ranis of Yale University and Lord Meghnad Desai of the London School of Economics, and was further used to measure a country's development by the United Nations Development Program (UNDP)'s Human Development Report Office.

Ecological footprint

The ecological footprint measures human demand on nature, i.e., the quantity of nature it takes to support people or an economy. It tracks this demand through an ecological accounting system. The accounts contrast the biologically productive area people use for their consumption to the biologically productive area available within a region or the world. In short, it is a measure of human impact on Earth's ecosystem and reveals the dependence of the human economy on natural capital.

Global Footprint Network organization

Global Footprint Network, founded in 2003, is an independent think tank originally based in the United States, Belgium and Switzerland. It was established as a charitable not-for-profit organization in each of those three countries.

At the heart of the debate over different indicators are not only different disciplinary approaches but also different views of development. Some indicators reflect the ideology of globalization and urbanization that seek to define and measure progress on whether different countries or cultures agree to accept industrial technologies in their eco-systems. [1] Other approaches, like those that start from international treaties on cultural rights of indigenous peoples to maintain traditional cultures, measure the ability of those cultures to maintain their traditions within their eco-systems at whatever level of productivity they choose.

Regional development is the provision of aid and other assistance to regions which are less economically developed. Regional development may be domestic or international in nature. The implications and scope of regional development may therefore vary in accordance with the definition of a region, and how the region and its boundaries are perceived internally and externally.

Globalization or globalisation is the process of interaction and integration among people, companies, and governments worldwide. As a complex and multifaceted phenomenon, globalization is considered by some as a form of capitalist expansion which entails the integration of local and national economies into a global, unregulated market economy. Globalization has grown due to advances in transportation and communication technology. With the increased global interactions comes the growth of international trade, ideas, and culture. Globalization is primarily an economic process of interaction and integration that's associated with social and cultural aspects. However, conflicts and diplomacy are also large parts of the history of globalization, and modern globalization.

Urbanization longterm population movements (shift) from rural to urban areas;gradual increase in the proportion of people living in urban areas, and the ways in which each society adapts to the change;process by which towns and cities are formed and become larger

Urbanization refers to the population shift from rural areas to urban areas, the gradual increase in the proportion of people living in urban areas, and the ways in which each society adapts to this change. It is predominantly the process by which towns and cities are formed and become larger as more people begin living and working in central areas. Although the two concepts are sometimes used interchangeably, urbanization should be distinguished from urban growth: urbanization is "the proportion of the total national population living in areas classed as urban", while urban growth refers to "the absolute number of people living in areas classed as urban". The United Nations projected that half of the world's population would live in urban areas at the end of 2008. It is predicted that by 2050 about 64% of the developing world and 86% of the developed world will be urbanized. That is equivalent to approximately 3 billion urbanites by 2050, much of which will occur in Africa and Asia. Notably, the United Nations has also recently projected that nearly all global population growth from 2017 to 2030 will be absorbed by cities, about 1.1 billion new urbanites over the next 13 years.

The Lempert-Nguyen indicator, devised in 2008 for practitioners, starts with the standards for sustainable development that have been agreed upon by the international community and then looks at whether intergovernmental organizations such as the UNDP and other development actors are applying these principles in their projects and work as a whole. [2]

In using sustainability indicators, it is important to distinguish between three types of sustainability that are often mentioned in international development:

The following list is not exhaustive but contains the major points of view:

"Daly Rules" approach

University of Maryland School of Public Policy professor and former Chief Economist for the World Bank Herman E. Daly (working from theory initially developed by Romanian economist Nicholas Georgescu-Roegen and laid out in his 1971 opus "The Entropy Law and the Economic Process") suggests the following three operational rules defining the condition of ecological (thermodynamic) sustainability:

  1. Renewable resources such as fish, soil, and groundwater must be used no faster than the rate at which they regenerate.
  2. Nonrenewable resources such as minerals and fossil fuels must be used no faster than renewable substitutes for them can be put into place.
  3. Pollution and wastes must be emitted no faster than natural systems can absorb them, recycle them, or render them harmless.

Some commentators have argued that the "Daly Rules", being based on ecological theory and the Laws of Thermodynamics, should perhaps be considered implicit or foundational for the many other systems that are advocated, and are thus the most straightforward system for operationalization of the Bruntland Definition. In this view, the Bruntland Definition and the Daly Rules can be seen as complementary—Bruntland provides the ethical goal of non-depletion of natural capital, Daly details parsimoniously how this ethic is operationalized in physical terms. The system is rationally complete, and in agreement with physical laws. Other definitions may thus be superfluous, or mere glosses on the immutable thermodynamic reality. [3]

There are numerous other definitions and systems of operationalization for sustainability, and there has been competition for influence between them, with the unfortunate result that, in the minds of some observers at least, sustainability has no agreed-upon definition.

Natural Step approach

Following the Brundtland Commission's report, one of the first initiatives to bring scientific principles to the assessment of sustainability was by Swedish cancer scientist Karl-Henrik Robèrt. Robèrt coordinated a consensus process to define and operationalize sustainability. At the core of the process lies a consensus on what Robèrt came to call the natural step framework. The framework is based on a definition of sustainability, described as the system conditions of sustainability (as derived from System theory). In the natural step framework, a sustainable society does not systematically increase concentrations of substances extracted from the Earth's crust, or substances produced by society; that does not degrade the environment and in which people have the capacity to meet their needs worldwide. [4]

Ecological footprint approach

Ecological footprint accounting, based on the biological concept of carrying capacity, tracks the amount of land and water area a human population, needed to produce the resources the population consumes and to absorb its waste, under prevailing technology. This amount then is compared to available biocapacity, in the world or in that region. The biocapacity represents the area able to regenerate resources and assimilate waste. Global Footprint Network publishes every year results for all nations captured in UN statistics.

The algorithms of ecological footprint accounts have been used in combination with the emergy methodology (S. Zhao, Z. Li and W. Li 2005), and a sustainability index has been derived from the latter. They have also been combined with a measure of quality of life, for instance through the "Happy Planet Index" (HPI) calculated for 178 nations (Marks et al., 2006). The Happy Planet Index calculates how many happy life years each country is able to generate per global hectare of ecological footprint.

One of the striking conclusions to emerge from ecological footprint accounting is that it would be necessary to have 4 or 5 back-up planets engaged in nothing but agriculture for all those alive today to live a western lifestyle. [5] The Footprint analysis is closely related to the I = PAT equation that, itself, can be considered a metric.

Anthropological-cultural approach

Though sustainable development has become a concept that biologists and ecologists have measured from an eco-system point of view and that the business community has measured from a perspective of energy and resource efficiencies and consumption, the discipline of anthropology is itself founded on the concept of sustainability of human groups within ecological systems. At the basis of the definition of culture is whether a human group is able to transmit its values and continue several aspects of that lifestyle for at least three generations. The measurement of culture, by anthropologists, is itself a measure of sustainability and it is also one that has been codified by international agreements and treaties like the Rio Declaration of 1992 and the United Nations Declaration on the Rights of Indigenous Peoples to maintain a cultural group's choice of lifestyles within their lands and ecosystems.

Terralingua, an organization of anthropologists and linguists working to protect biocultural diversity, with a focus on language, has devised a sert of measures with UNESCO for measuring the survivability of languages and cultures in given eco-systems. [6]

The Lempert–Nguyen indicator of sustainable development, developed in 2008 by David Lempert and Hue Nhu Nguyen, is one that incorporates and integrates these cultural principles with international law. [2]

Circles of Sustainability approach

A number of agencies including the UN Global Compact Cities Programme, World Vision and Metropolis have since 2010 begun using the Circles of Sustainability approach that sets up a four-domain framework for choosing appropriate indicators. Rather than designating the indicators that have to be used like most other approaches, it provides a framework to guide decision-making on what indicators are most useful. The framework is arranged around four domains - economics, ecology, politics and culture - which are then subdivided into seven analytically derived sub-domains for each domain. Indicators are linked to each sub-domain. By choosing culture as one of its key domains, the approach takes into account the emphasis of the 'Anthropological' approach (above), but retains a comprehensive sense of sustainability. The approach can be used to map any other sustainability indicator set. [7] This is foundationally different from the Global Reporting Initiative Index (below) which uses a triple-bottom-line organizing framework, and is most relevant to corporate reporting.

Global Reporting Initiative Index

In 1997 the Global Reporting Initiative (GRI) was started as a multi-stakeholder process and independent institution whose mission has been "to develop and disseminate globally applicable Sustainability Reporting Guidelines". The GRI uses ecological footprint analysis and became independent in 2002. It is an official collaborating centre of the United Nations Environment Programme (UNEP) and during the tenure of Kofi Annan, it cooperated with the UN Secretary-General's Global Compact.

Energy, Emergy and Sustainability Index

In 1956 Dr. Howard T. Odum of the University of Florida coined the term Emergy and devised the accounting system of embodied energy.

In 1997, systems ecologists M.T. Brown and S. Ulgiati published their formulation of a quantitative Sustainability Index (SI) as a ratio of the emergy (spelled with an "m", i.e. "embodied energy", not simply "energy") yield ratio (EYR) to the environmental loading ratio (ELR). Brown and Ulgiati also called the sustainability index the "Emergy Sustainability Index" (ESI), "an index that accounts for yield, renewability, and environmental load. It is the incremental emergy yield compared to the environmental load". [8]

Sustainability Index = Emergy Yield Ratio/Environmental Loading Ratio = EYR/ELR

Writers like Leone (2005) and Yi et al. have also recently suggested that the emergy sustainability index has significant utility. In particular, Leone notes that while the GRI measures behavior, it fails to calculate supply constraints the emergy methodology aims to calculate.

Environmental Sustainability Index

In 2004, a joint initiative of the Yale Center for Environmental Law and Policy (YCELP) and the Center for International Earth Science Information Network (CIESIN) of Columbia University, in collaboration with the World Economic Forum and the Directorate-General Joint Research Centre (European Commission) also attempted to construct an Environmental Sustainability Index (ESI). [10] This was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum (WEF) on 28 January 2005. The report on this index made a comparison of the WEF ESI to other sustainability indicators such as the Ecological footprint Index. However, there was no mention of the emergy sustainability index.

IISD Sample Policy Framework

In 1996 the International Institute for Sustainable Development (IISD) developed a Sample Policy Framework, which proposed that a sustainability index "...would give decision-makers tools to rate policies and programs against each other" (1996, p. 9). Ravi Jain (2005) [11] argued that, "The ability to analyze different alternatives or to assess progress towards sustainability will then depend on establishing measurable entities or metrics used for sustainability."

Sustainability dashboard

The International Institute for Sustainable Development has produced a "Dashboard of Sustainability", "a free, non-commercial software package that illustrates the complex relationships among economic, social and environmental issues". This is based on Sustainable Development Indicators Prepared for the United Nations Division for Sustainable Development (UN-DSD)DECEMBER 2005.

WBCSD approach

The World Business Council for Sustainable Development (WBCSD), founded in 1995, has formulated the business case for sustainable development and argues that "sustainable development is good for business and business is good for sustainable development". This view is also maintained by proponents of the concept of industrial ecology. The theory of industrial ecology declares that industry should be viewed as a series of interlocking man-made ecosystems interfacing with the natural global ecosystem.

According to some economists, it is possible for the concepts of sustainable development and competitiveness to merge if enacted wisely, so that there is not an inevitable trade-off. [12] This merger is motivated by the following six observations (Hargroves & Smith 2005):

  1. Throughout the economy there are widespread untapped potential resource productivity improvements to be made to be coupled with effective design.
  2. There has been a significant shift in understanding over the last three decades of what creates lasting competitiveness of a firm.
  3. There is now a critical mass of enabling technologies in eco-innovations that make integrated approaches to sustainable development economically viable.
  4. Since many of the costs of what economists call ‘environmental externalities’ are passed on to governments, in the long-term sustainable development strategies can provide multiple benefits to the tax payer.
  5. There is a growing understanding of the multiple benefits of valuing social and natural capital, for both moral and economic reasons, and including them in measures of national well-being.
  6. There is mounting evidence to show that a transition to a sustainable economy, if done wisely, may not harm economic growth significantly, in fact it could even help it. Recent research by ex-Wuppertal Institute member Joachim Spangenberg, working with neo-classical economists, shows that the transition, if focused on improving resource productivity, leads to higher economic growth than business as usual, while at the same time reducing pressures on the environment and enhancing employment.

Life-cycle assessment

Life-cycle assessment is a "composite measure of sustainability." [13] It analyses the environmental performance of products and services through all phases of their life cycle: extracting and processing raw materials; manufacturing, transportation and distribution; use, re-use, maintenance; recycling, and final disposal.

Sustainable enterprise approach

Building on the work of the World Business Council for Sustainable Development, businesses began to see the needs of environmental and social systems as opportunities for business development and contribution to stakeholder value. This approach has manifested itself in three key areas of strategic intent: 'sustainable innovation', human development, and 'bottom of the pyramid' business strategies. Now, as businesses have begun the shift toward sustainable enterprise, many business schools are leading the research and education of the next generation of business leaders. Companies have introduced key development indicators to set targets and track progress on sustainable development. Some key players[ according to whom? ] are:

Sustainable livelihoods approach

Another application of the term sustainability has been in the Sustainable Livelihoods Approach, developed from conceptual work by Amartya Sen, and the UK's Institute for Development Studies http://www.ids.ac.uk. This was championed by the UK's Department for International Development(DFID), UNDP, Food and Agriculture Organization (FAO) as well as NGOs such as CARE, OXFAM and the African Institute for Community-Driven Development, Khanya-aicdd http://www.khanya-aicdd.org. Key concepts include the Sustainable Livelihoods (SL) Framework, a holistic way of understanding livelihoods, the SL principles, as well as six governance issues developed by Khanya-aicdd. [14] A wide range of information resources on Sustainable Livelihoods Approaches can be found at Livelihoods Connect http://www.livelihoods.org

Some analysts view this measure with caution because they believe that it has a tendency to take one part of the footprint analysis and I = PAT equation (productivity) and to focus on the sustainability of economic returns to an economic sector rather than on the sustainability of the entire population or culture.

FAO types of sustainability

The United Nations Food and Agriculture Organization  (FAO) has identified considerations for technical cooperation that affect three types of sustainability:

Some ecologists have emphasised a fourth type of sustainability:

"Development sustainability" approaches

Sustainability is relevant to international development projects. One definition of development sustainability is "the continuation of benefits after major assistance from the donor has been completed" (Australian Agency for International Development 2000). Ensuring that development projects are sustainable can reduce the likelihood of them collapsing after they have just finished; it also reduces the financial cost of development projects and the subsequent social problems, such as dependence of the stakeholders on external donors and their resources. All development assistance, apart from temporary emergency and humanitarian relief efforts, should be designed and implemented with the aim of achieving sustainable benefits. There are ten key factors that influence development sustainability. [ citation needed ]

  1. Participation and ownership. Get the stakeholders (men and women) to genuinely participate in design and implementation. Build on their initiatives and demands. Get them to monitor the project and periodically evaluate it for results.
  2. Capacity building and training. Training stakeholders to take over should begin from the start of any project and continue throughout. The right approach should both motivate and transfer skills to people.
  3. Government policies. Development projects should be aligned with local government policies.
  4. Financial. In some countries and sectors, financial sustainability is difficult in the medium term. Training in local fundraising is a possibility, as is identifying links with the private sector, charging for use, and encouraging policy reforms.
  5. Management and organization. Activities that integrate with or add to local structures may have better prospects for sustainability than those that establish new or parallel structures.
  6. Social, gender and culture. The introduction of new ideas, technologies and skills requires an understanding of local decision-making systems, gender divisions and cultural preferences.
  7. Technology. All outside equipment must be selected with careful consideration given to the local finance available for maintenance and replacement. Cultural acceptability and the local capacity to maintain equipment and buy spare parts are vital.
  8. Environment. Poor rural communities that depend on natural resources should be involved in identifying and managing environmental risks. Urban communities should identify and manage waste disposal and pollution risks.
  9. External political and economic factors. In a weak economy, projects should not be too complicated, ambitious or expensive.
  10. Realistic duration. A short project may be inadequate for solving entrenched problems in a sustainable way, particularly when behavioural and institutional changes are intended. A long project, may on the other hand, promote dependence.

The definition of sustainability as "the continuation of benefits after major assistance from the donor has been completed" (Australian Agency for International Development 2000) is echoed by other definitions (World Bank, USAID). The concept has however evolved as it has become of interest to non grant-making institutions. Sustainability in development refers to processes and relative increases in local capacity and performance while foreign assistance decreases or shifts (not necessarily disappears). The objective of sustainable development is open to various interpretations. [15]

See also

Related Research Articles

Sustainable development mode of human development; organizing principle for meeting human development goals while at the same time sustaining the ability of natural systems to provide the natural resources and ecosystem services upon which the economy and society depend

Sustainable development is the organizing principle for meeting human development goals while at the same time sustaining the ability of natural systems to provide the natural resources and ecosystem services upon which the economy and society depend. The desired result is a state of society where living conditions and resource use continue to meet human needs without undermining the integrity and stability of the natural system. Sustainable development can be classified as development that meets the needs of the present without compromising the ability of future generations.

Quality of life (QOL) is an overarching term for the quality of the various domains in life. It is a standard level that consists of the expectations of an individual or society for a good life. These expectations are guided by the values, goals and socio-cultural context in which an individual lives. It is a subjective, multidimensional concept that defines a standard level for emotional, physical, material and social well-being. It serves as a reference against which an individual or society can measure the different domains of one’s own life. The extent to which one's own life coincides with this desired standard level, put differently, the degree to which these domains give satisfaction and as such contribute to one's subjective well-being, is called life satisfaction.

International development wide concept concerning the level of development on an international scale

International development or global development is a broad concept denoting the idea that societies and countries have differing levels of 'development' on an international scale. It is the basis for international classifications such as developed country, developing country and least developed country, and for a field of practice and research that in various ways engages with international development processes. There are, however, many schools of thought and conventions regarding which are the exact features constituting the 'development' of a country.

The green gross domestic product is an index of economic growth with the environmental consequences of that growth factored into a country's conventional GDP. Green GDP monetizes the loss of biodiversity, and accounts for costs caused by climate change. Some environmental experts prefer physical indicators, which may be aggregated to indices such as the "Sustainable Development Index".

The green economy is defined as an economy that aims at reducing environmental risks and ecological scarcities, and that aims for sustainable development without degrading the environment. It is closely related with ecological economics, but has a more politically applied focus. The 2011 UNEP Green Economy Report argues "that to be green, an economy must not only be efficient, but also fair. Fairness implies recognising global and country level equity dimensions, particularly in assuring a just transition to an economy that is low-carbon, resource efficient, and socially inclusive."

Emergy is the amount of energy that was consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources Each form is generated by transformation processes in nature and each has a different ability to support work in natural and in human systems. The recognition of these quality differences is a key concept.

An eco-city or ecocity is "a human settlement modeled on the self-sustaining resilient structure and function of natural ecosystems", as defined by the Ecocity Builders. Simply put, an eco-city is an ecologically healthy city. The World Bank defines eco-cities as “cities that enhance the well-being of citizens and society through integrated urban planning and management that harness the benefits of ecological systems and protect and nurture these assets for future generations”. Although there is no universally accepted definition of an 'eco-city', among available definitions, there is some consensus on the basic features of an eco-city.

The concept of transformity was first introduced by David M. Scienceman in collaboration with Howard T. Odum. In 1987 Scienceman proposed that the phrases, "energy quality", "energy quality factor", and "energy transformation ratio", all used by H.T.Odum, be replaced by the word "transformity" (p. 261). This approach aims to solve a long standing issue about the relation of qualitative phenomena to quantitative phenomena often analysed in the physical sciences, which in turn is a synthesis of rationalism with phenomenology. That is to say that it aims to quantify quality.

Environmental indicators are simple measures that tell us what is happening in the environment. Since the environment is very complex, indicators provide a more practical and economical way to track the state of the environment than if we attempted to record every possible variable in the environment. For example, concentrations of ozone depleting substances (ODS) in the atmosphere, tracked over time, is a good indicator with respect to the environmental issue of stratospheric ozone depletion..

Happy Planet Index human well-being and environmental impact

The Happy Planet Index (HPI) is an index of human well-being and environmental impact that was introduced by the New Economics Foundation (NEF) in July 2006. The index is weighted to give progressively higher scores to nations with lower ecological footprints.

Ecologically sustainable development is the environmental component of sustainable development. It can be achieved partially through the use of the precautionary principle; if there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation. Also important is the principle of intergenerational equity; the present generation should ensure that the health, diversity and productivity of the environment is maintained or enhanced for the benefit of future generations. In order for this movement to flourish, environmental factors should be more heavily weighed in the valuation of assets and services to provide more incentive for the conservation of biological diversity and ecological integrity.

Sustainability accounting

Sustainability accounting was originated about 20 years ago and is considered a subcategory of financial accounting that focuses on the disclosure of non-financial information about a firm's performance to external stakeholders, such as capital holders, creditors, and other authorities. Sustainability accounting represents the activities that have a direct impact on society, environment, and economic performance of an organisation. Sustainability accounting in managerial accounting contrasts with financial accounting in that managerial accounting is used for internal decision making and the creation of new policies that will have an effect on the organisation's performance at economic, ecological, and social level. Sustainability accounting is often used to generate value creation within an organisation.

Sustainability measurement is the quantitative basis for the informed management of sustainability. The metrics used for the measurement of sustainability are still evolving: they include indicators, benchmarks, audits, indexes and accounting, as well as assessment, appraisal and other reporting systems. They are applied over a wide range of spatial and temporal scales.

Social sustainability

Social sustainability? is the least defined and least understood of the different ways of approaching sustainability and sustainable development. Social sustainability has had considerably less attention in public dialogue than economic and environmental sustainability.

Committee on Sustainability Assessment organization

The Committee on Sustainability Assessment (COSA) is a global consortium of development institutions that work collaboratively to advance the systematic and science-based measurement of sustainability in agriculture. COSA applies a pragmatic and collective approach for using scientific methods to develop indicators and tools to measure sustainability through performance monitoring, evaluation, and impact assessment. These sustainability measurements assess the distinct social, environmental and economic impacts of agricultural practices.

Although for many decades, it was customary to focus on GDP and other measures of national income, there has been growing interest in developing broad measures of economic well-being. National and international approaches include the Beyond GDP programme developed by the European Union, the Better Lives Compendium of Indicators developed by the OECD, as well as many alternative metrics of wellbeing or happiness. One of the earliest attempts to develop such an index at national level was Bhutan's Gross National Happiness Index and there are a now a number of similar projects ongoing around the world, including a project to develop for the UK an assessment of national well-being, commissioned by the Prime Minister David Cameron and led by the Office for National Statistics.

Traditionally, market orientation (MO) focuses on microenvironment and the functional management of an organisation. However, contemporary organisations have widened their focus to incorporate more roles, functions and emphasis on the macro environment. Firms have been concerned with short run success and often not taken into account the long-run ecological, social and economic effects from their activities. Despite growth in the MO concept, there is still a need to reconceptualise the concept with a greater emphasis on external factors that influence a firm.

Natural capital accounting is the process of calculating the total stocks and flows of natural resources and services in a given ecosystem or region. Accounting for such goods may occur in physical or monetary terms. This process can subsequently inform government, corporate and consumer decision making as each relates to the use or consumption of natural resources and land, and sustainable behaviour.

References

  1. Boulanger, P. M. (2008) "Sustainable development indicators: a scientific challenge, a democratic issue". S.A.P.I.EN.S.1 (1)
  2. 1 2 Lempert, David; Nguyen, Hue Nhu (2008). "A sustainable development indicator for NGOs and international organisations". International Journal of Sustainable Society. 1 (1): 44–54. doi:10.1504/IJSSoc.2008.020376 . Retrieved 22 September 2014.
  3. Womersley, Michael: A Peculiarly American Green: Religion and Environmental Policy in the United States, 2002, Dissertation, University of Maryland School of Public Policy. pg.19-21
  4. TNS Canada System Conditions. Retrieved on: 20078-07-15.
  5. Global Footprint Atlas 2008, Global Footprint Network, 2008.
  6. Paul James and Andy Scerri, ‘Auditing Cities through Circles of Sustainability’, Mark Amen, Noah J. Toly, Patricia L. Carney and Klaus Segbers, eds, Cities and Global Governance, Ashgate, Farnham, 2011, pp. 111–36. Andy Scerri and Paul James, ‘Communities of Citizens and “Indicators” of Sustainability’, Community Development Journal, vol. 45, no. 2, 2010, pp. 219–36. Andy Scerri and Paul James, ‘Accounting for Sustainability: Combining Qualitative and Quantitative Research in Developing ‘Indicators’ of Sustainability’, International Journal of Social Research Methodology, vol. 13, no. 1, 2010, pp. 41–53.
  7. Brown, M.T. and S. Ulgiati.1999. Emergy evaluation of natural capital and biosphere services. AMBIO. Vol.28 No.6, September 1999.
  8. Ulgiati, S. and M.T. Brown. 1999. Emergy accounting of human-dominated, large scale ecosystems. In Jorgensen and Kay (eds.) Thermodynamics and Ecology. Elsevier.
  9. Environmental Sustainability Index (2005) Yale Center for Environmental Law and Policy Yale University, New Haven and Yale University Center for International Earth Science Information Network Columbia University
  10. Jain, Ravi; Sustainability: metrics, specific indicators and preference index, Clean Technologies and Environmental Policy (Journal), May 2005, pg. 71-72
  11. Esty, D. C., Porter, M. E., Industrial Ecology and Competitiveness: Strategic Implications for the Firm, Journal of Industrial Ecology Winter 1998, Vol. 2, No. 1: 35-43.
  12. "Measures of sustainability". Canadian Architect. Retrieved on: June 30, 2007.
  13. Khanya-aicdd
  14. Vivien, F. D. (2008) "Sustainable development: An overview of economic proposals". S.A.P.I.EN.S.1 (2)