Sustainable lighting

Last updated
Daylight used at the train station Gare de l'Est Paris Gare de l'Est Paris 2007 033.jpg
Daylight used at the train station Gare de l'Est Paris

[1] [2] Sustainable lighting is lighting designed with energy efficient light sources. "There are simple design strategies and some materials that can facilitate the energy saving advantages of natural light. Light colored interiors and open floor plans are good choices. This approach also augments artificial light efficiency. Energy efficient lighting is not simply finding the most light for the least wattage or the longest lasting light bulb. Proper sizing of the light to the needs of the location and the tasks that will be performed, called task lighting, is an energy saving strategy." [3]

"The most sustainable source of lighting is daylight, other forms are solar lamps harvesting daylight and lighting controlled by occupation sensors. Furthermore technologies such as light-emitting diodes can be used to drastically reduce the energy requirement for energy. Part L of the UK lighting regulations contains criteria that effects efficient lighting design. [4]

Both day lighting and electric lighting are used in architectural lighting design, and not just as something installed to enable people to see their task. Satisfaction surveys indicate that people prefer rooms that are day lit to interiors dominated by electric lighting. In addition, the use of daylight can significantly reduce a building's use of energy. [5] Post-occupancy research indicated that the success of a scheme in reducing energy is not determined solely by the quantity of light from windows, but also on the efficiency and control of the electric lighting and that the users of the building were motivated towards energy management. [6]

In cloudy climates, diffuse light from the sky is the main source of lighting. At the site planning stage, a sufficient area of sky must be made visible to give good interior lighting.

People’s needs and preferences to sunlight dependent on the type of building – incoming sunlight can give warmth and brightness but can also cause glare and thermal discomfort. The designer must to analyses the clients’ requirements in advance to determine which parts of a building would benefit from direct sunlight. Once the day lighting has been assessed, electric lighting needs to be designed to complement the daylight; where necessary electric light will take over when the daylight fades. [7] Zones can be considered relative to the daylight distribution – without this there will be a tendency for the lights to be in all the time. Electric lighting can also be integrated within the architecture. Daylight and the aesthetics can be considered as well as the installation into the buildings fabric and lighting effect.

Related Research Articles

Passive solar building design Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

Daylighting Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming/switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

Lighting Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

Energy conservation Reducing energy consumption

Energy conservation is the effort made to reduce the consumption of energy by using less of an energy service. This can be achieved either by using energy more efficiently or by reducing the amount of service used. Energy conservation is a part of the concept of Eco-sufficiency. Energy conservation measures (ECMs) in buildings reduce the need for energy services and can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.

Compact fluorescent lamp Fluorescent lamps with folded tubes, often with built-in ballast

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube that is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

Green building Architecture designed to minimize environmental and resource impact

Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. In doing so, the three dimensions of sustainability, i.e., planet, people and profit across the entire supply chain need to be considered.

Heliodon

A heliodon (HEE-leo-don) is a device for adjusting the angle between a flat surface and a beam of light to match the angle between a horizontal plane at a specific latitude and the solar beam. Heliodons are used primarily by architects and students of architecture. By placing a model building on the heliodon’s flat surface and making adjustments to the light/surface angle, the investigator can see how the building would look in the three-dimensional solar beam at various dates and times of day.

Low-energy house House designed for reduced energy use

A low-energy house is characterized by an energy-efficient design and technical features which enable it to provide high living standards and comfort with low energy consumption and carbon emissions. Traditional heating and active cooling systems are absent, or their use is secondary. Low-energy buildings may be viewed as examples of sustainable architecture. Low-energy houses often have active and passive solar building design and components, which reduce the house's energy consumption and minimally impact the resident's lifestyle. Throughout the world, companies and non-profit organizations provide guidelines and issue certifications to guarantee the energy performance of buildings and their processes and materials. Certifications include passive house, BBC - Bâtiment Basse Consommation - Effinergie (France), zero-carbon house (UK), and Minergie (Switzerland).

Architectural lighting design Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

Sustainable architecture Architecture designed to minimize environmental impact

Sustainable architecture is architecture that seeks to minimize the negative environmental impact of buildings through improved efficiency and moderation in the use of materials, energy, development space and the ecosystem at large. Sustainable architecture uses a conscious approach to energy and ecological conservation in the design of the built environment.

Lighting control system Intelligent network based lighting control solution

A lighting control system is an intelligent network based lighting control solution that incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems are sometimes referred to under the term smart lighting. Lighting control systems serve to provide the right amount of light where and when it is needed.

Zero-energy building Energy efficiency standard for buildings

A Zero Energy Building (ZEB), also known as a Net Zero Energy (NZE) building, or a Zero Net Energy (ZNE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels. The goal is that these buildings contribute less overall greenhouse gas to the atmosphere during operations than similar non-ZNE buildings. They do at times consume non-renewable energy and produce greenhouse gases, but at other times reduce energy consumption and greenhouse gas production elsewhere by the same amount. Zero-energy buildings are not only driven by a want to have less of an impact on the environment, but they are also driven by money. Tax breaks as well as savings on energy costs make Zero-energy buildings financially viable. A similar concept approved and implemented by the European Union and other agreeing countries is nearly Zero Energy Building (nZEB), with the goal of having all new buildings in the region under nZEB standards by 2020.

Overillumination Lighting intensity higher than that which is appropriate

Overillumination is the presence of lighting intensity higher than that which is appropriate for a specific activity. Overillumination was commonly ignored between 1950 and 1995, especially in office and retail environments. Since then, however, the interior design community has begun to reconsider this practice. Overillumination encompasses two separate concerns:

LED lamp Light source

An LED lamp or LED light bulb is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and can be significantly more efficient than most fluorescent lamps. The most efficient commercially available LED lamps have efficiencies of 200 lumen per watt (Lm/W). Commercial LED lamps have a lifespan many times longer than incandescent lamps.

Efficient energy use Energy efficiency

Efficient energy use, sometimes simply called energy efficiency, is the goal to reduce the amount of energy required to provide products and services and can also reduce effects of air pollution. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

A green museum is a museum that incorporates concepts of sustainability into its operations, programming, and facility. Many green museums use their collections to produce exhibitions, events, classes, and other programming to educate the public about the natural environment. Many, but not all, green museums reside in a building featuring sustainable architecture and technology. Green museums interpret their own sustainable practices and green design to present a model of behavior.

Daylight harvesting systems use daylight to offset the amount of electric lighting needed to properly light a space, in order to reduce energy consumption. This is accomplished using lighting control systems that are able to dim or switch electric lighting in response to changing daylight availability. The term Daylight Harvesting has become the standard in the fields of lighting, sustainable architecture, and active daylighting industries.

A green retrofit is any refurbishment of an existing building that aims to reduce the carbon emissions and environmental impact of the building. This includes, but is not limited to, improving the energy efficiency of the heating, air conditioning, ventilation, and other mechanical systems, increasing the quality of insulation in the building envelope, implementing sustainable energy generation, and aiming to improve occupant comfort and health.

Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfortability of occupants in a building.

Skylight Window in the ceiling-roof

A skylight is a light-permitting structure or window, usually made of transparent or translucent glass, that forms all or part of the roof space of a building for daylighting and ventilation purposes.

References

  1. "Sustainable lighting". Signify. Retrieved 2022-06-15.
  2. "Pooky's five steps to sustainable lighting". Pooky Lighting. Retrieved 2022-06-15.
  3. "Lighting – Sustainable Sources LLC".
  4. https://www.cibse.org/getmedia/486e0365-9b7c-4f4c-a998-53ad4bfc3ca5/160309-Part-L-of-the-Building-Regulations_2016.pdf.aspx [ bare URL PDF ]
  5. "Harnessing Daylight for Energy Savings | Greenbiz". www.greenbiz.com. Retrieved 2022-06-15.
  6. "Paracel Islands | World Factbook". relief.unboundmedicine.com. Retrieved 2022-06-15.
  7. "Sustainable Lighting". 19 July 2007.