Embodied energy

Last updated

Embodied energy is the sum of all the energy required to produce any goods or services, considered as if that energy were incorporated or 'embodied' in the product itself. The concept can be useful in determining the effectiveness of energy-producing or energy saving devices, or the "real" replacement cost of a building, and, because energy-inputs usually entail greenhouse gas emissions, in deciding whether a product contributes to or mitigates global warming. One fundamental purpose for measuring this quantity is to compare the amount of energy produced or saved by the product in question to the amount of energy consumed in producing it.

Contents

Embodied energy is an accounting method which aims to find the sum total of the energy necessary for an entire product lifecycle. Determining what constitutes this lifecycle includes assessing the relevance and extent of energy into raw material extraction, transport, manufacture, assembly, installation, disassembly, deconstruction and/or decomposition as well as human and secondary resources.

History

The history of constructing a system of accounts which records the energy flows through an environment can be traced back to the origins of accounting itself. As a distinct method, it is often associated with the Physiocrat's "substance" theory of value, [1] and later the agricultural energetics of Sergei Podolinsky, a Russian physician, [2] and the ecological energetics of Vladmir Stanchinsky. [3]

The main methods of embodied energy accounting as they are used today grew out of Wassily Leontief's input-output model and are called Input-Output Embodied Energy analysis. Leontief's input-output model was in turn an adaptation of the neo-classical theory of general equilibrium with application to "the empirical study of the quantitative interdependence between interrelated economic activities". [4] According to Tennenbaum [5] Leontief's Input-Output method was adapted to embodied energy analysis by Hannon [6] to describe ecosystem energy flows. Hannon's adaptation tabulated the total direct and indirect energy requirements (the energy intensity) for each output made by the system. The total amount of energies, direct and indirect, for the entire amount of production was called the embodied energy.

Methodologies

Embodied energy analysis is interested in what energy goes to supporting a consumer, and so all energy depreciation is assigned to the final demand of consumer. Different methodologies use different scales of data to calculate energy embodied in products and services of nature and human civilization. International consensus on the appropriateness of data scales and methodologies is pending. This difficulty can give a wide range in embodied energy values for any given material. In the absence of a comprehensive global embodied energy public dynamic database, embodied energy calculations may omit important data on, for example, the rural road/highway construction and maintenance needed to move a product, marketing, advertising, catering services, non-human services and the like. Such omissions can be a source of significant methodological error in embodied energy estimations. [7] Without an estimation and declaration of the embodied energy error, it is difficult to calibrate the sustainability index, and so the value of any given material, process or service to environmental and economic processes.

Standards

The SBTool, UK Code for Sustainable Homes was, and USA LEED still is, a method in which the embodied energy of a product or material is rated, along with other factors, to assess a building's environmental impact. Embodied energy is a concept for which scientists have not yet agreed absolute universal values because there are many variables to take into account, but most agree that products can be compared to each other to see which has more and which has less embodied energy. Comparative lists (for an example, see the University of Bath Embodied Energy & Carbon Material Inventory [8] ) contain average absolute values, and explain the factors which have been taken into account when compiling the lists.

Typical embodied energy units used are MJ/kg (megajoules of energy needed to make a kilogram of product), tCO2 (tonnes of carbon dioxide created by the energy needed to make a kilogram of product). Converting MJ to tCO2 is not straightforward because different types of energy (oil, wind, solar, nuclear and so on) emit different amounts of carbon dioxide, so the actual amount of carbon dioxide emitted when a product is made will be dependent on the type of energy used in the manufacturing process. For example, the Australian Government [9] gives a global average of 0.098 tCO2 = 1 GJ. This is the same as 1 MJ = 0.098 kgCO2 = 98 gCO2 or 1 kgCO2 = 10.204 MJ.

In the 2000s drought conditions in Australia have generated interest in the application of embodied energy analysis methods to water. This has led to the use of the concept of embodied water. [10]

Data

A range of databases exist for quantifying the embodied energy of goods and services, including materials and products. These are based on a range of different data sources, with variations in geographic and temporal relevance and system boundary completeness. One such database is the Environmental Performance in Construction (EPiC) Database developed at The University of Melbourne, which includes embodied energy data for over 250 mainly construction materials. This database also includes values for embodied water and greenhouse gas emissions. [11] The main reason for differences in embodied energy data between databases is due to the source of data and methodology used in their compilation. Bottom-up 'process' data is typically sourced from product manufacturers and suppliers. While this data is generally more reliable and specific to particular products, the methodology used to collect process data typically results in much of the embodied energy of a product being excluded, mainly due to the time, costs and complexity of data collection. Top-down environmentally-extended input-output (EEIO) data, based on national statistics can be used to fill these data gaps. While EEIO analysis of products can be useful on its own for initial scoping of embodied energy, it is generally much less reliable than process data and rarely relevant for a specific product or material. Hence, hybrid methods for quantifying embodied energy have been developed, [12] using available process data and filling any data gaps with EEIO data. Databases that rely on this hybrid approach, such as The University of Melbourne's EPiC Database, [11] provide a more comprehensive assessment of the embodied energy of products and materials.

In common materials

Selected data from the Inventory of Carbon and Energy ('ICE') prepared by the University of Bath (UK) [8]

MaterialEnergy MJ/kgCarbon kg CO2/kgMaterial density kg/m3
Aggregate0.0830.00482240
Concrete (1:1.5:3)1.110.1592400
Bricks (common)30.241700
Concrete block (Medium density)0.670.0731450
Aerated block3.50.3750
Limestone block0.852180
Marble20.1162500
Cement mortar (1:3)1.330.208
Steel (general, av. recycled content)20.11.377800
Stainless steel 56.76.157850
Timber (general, excludes sequestration)8.50.46480–720
Glue laminated timber120.87
Cellulose insulation (loose fill)0.94–3.343
Cork insulation26160
Glass fibre insulation (glass wool)281.3512
Flax insulation39.51.730
Rockwool (slab)16.81.0524
Expanded Polystyrene insulation88.62.5515–30
Polyurethane insulation (rigid foam)101.53.4830
Wool (recycled) insulation20.925
Straw bale0.91100–110
Mineral fibre roofing tile372.71850
Slate 0.1–1.00.006–0.0581600
Clay tile6.50.451900
Aluminium (general & incl 33% recycled)1558.242700
Bitumen (general)510.38–0.43
Medium-density fibreboard 110.72680–760
Plywood 151.07540–700
Plasterboard6.750.38800
Gypsum plaster1.80.121120
Glass 150.852500
PVC (general)77.22.411380
Vinyl flooring65.642.921200
Terrazzo tiles1.40.121750
Ceramic tiles120.742000
Wool carpet1065.53
Wallpaper36.41.93
Vitrified clay pipe (DN 500)7.90.52
Iron (general)251.917870
Copper (average incl. 37% recycled)422.68600
Lead (incl 61% recycled)25.211.5711340
Ceramic sanitary ware291.51
Paint - Water-borne592.12
Paint - Solvent-borne973.13
Photovoltaic (PV) Cells TypeEnergy MJ per m2Energy kWh per m2Carbon kg CO2 per m2
Monocrystalline (average)47501319.5242
Polycrystalline (average)40701130.5208
Thin film (average)1305362.567

In transportation

Theoretically, embodied energy stands for the energy used to extract materials from mines, manufacture vehicles, assemble, transport, maintain, and transform them to transport energy, and ultimately recycle these vehicles. Besides, the energy needed to build and maintain transport networks, whether road or rail, should be taken into account as well. The process to be implemented is so complex that no one dares to put forward a figure.

According to the Institut du développement durable et des relations internationales, in the field of transportation, "it is striking to note that we consume more embodied energy in our transportation expenditures than direct energy", and "we consume less energy to move around in our personal vehicles than we consume the energy we need to produce, sell and transport the cars, trains or buses we use". [13]

Jean-Marc Jancovici advocates a carbon footprint analysis of any transportation infrastructure project, prior to its construction. [14]

In automobiles

The embodied energy contents of a Volkswagen Golf A3 car is 18 000 kWh, the electric energy produced by roughly 9 tons of coal 1996-1998 Volkswagen Golf (1H) CL 5-door hatchback 03.jpg
The embodied energy contents of a Volkswagen Golf A3 car is 18 000 kWh, the electric energy produced by roughly 9 tons of coal
Car life cycle Car life cycle.svg
Car life cycle

Manufacturing

According to Volkswagen, the embodied energy contents of a Golf A3 with a petrol engine amounts to 18 000 kWh (i.e. 12% of 545 GJ as shown in the report [15] ). A Golf A4 (equipped with a turbocharged direct injection) will show an embodied energy amounting to 22 000 kWh (i.e. 15% of 545 GJ as shown in the report [15] ). According to the French energy and environment agency ADEME [16] a motor car has an embodied energy contents of 20 800 kWh whereas an electric vehicle shows an embodied energy contents amounting to 34 700 kWh.

An electric car has a higher embodied energy than a combustion engine one, owing to the battery and electronics. According to Science & Vie, the embodied energy of batteries is so high that rechargeable hybrid cars constitute the most appropriate solution, [17] with their batteries smaller than those of an all-electric car.

Fuel

As regards energy itself, the factor energy returned on energy invested (EROEI) of fuel can be estimated at 8, which means that to some amount of useful energy provided by fuel should be added 1/7 of that amount in embodied energy of the fuel. In other words, the fuel consumption should be augmented by 14.3% due to the fuel EROEI.

According to some authors, to produce 6 liters of petrol requires 42 kWh of embodied energy (which corresponds to approximately 4.2 liters of diesel in terms of energy content). [18]

Road construction

We have to work here with figures, which prove still more difficult to obtain. In the case of road construction, the embodied energy would amount to 1/18 of the fuel consumption (i.e. 6%). [19]

Other figures available

Treloar, et al. have estimated the embodied energy in an average automobile in Australia as 0.27 terajoules (i.e. 75 000 kWh) as one component in an overall analysis of the energy involved in road transportation. [20]

In buildings

The typical lifespan of a house in Japan is fewer than 30 years Jian Mai Zhu Zhai  (4355308311).jpg
The typical lifespan of a house in Japan is fewer than 30 years

Although most of the focus for improving energy efficiency in buildings has been on their operational emissions, it is estimated that about 30% of all energy consumed throughout the lifetime of a building can be in its embodied energy (this percentage varies based on factors such as age of building, climate, and materials). In the past, this percentage was much lower, but as much focus has been placed on reducing operational emissions (such as efficiency improvements in heating and cooling systems), the embodied energy contribution has come much more into play. Examples of embodied energy include: the energy used to extract raw resources, process materials, assemble product components, transport between each step, construction, maintenance and repair, deconstruction and disposal. As such, it is important to employ a whole-life carbon accounting framework in analyzing the carbon emissions in buildings. [22] Studies have also shown the need to go beyond the building scale and to take into account the energy associated with mobility of occupants and the embodied energy of infrastructure requirements, in order to avoid shifting energy needs across scales of the built environment. [23] [24] [25] [26]

In the energy field

EROEI

EROEI (Energy Returned On Energy Invested) provides a basis for evaluating the embodied energy due to energy.

Final energy has to be multiplied by in order to get the embodied energy.

Given an EROEI amounting to eight e.g., a seventh of the final energy corresponds to the embodied energy.

Not only that, for really obtaining overall embodied energy, embodied energy due to the construction and maintenance of power plants should be taken into account, too. Here, figures are badly needed.

Electricity

In the BP Statistical Review of World Energy June 2018, toe are converted into kWh "on the basis of thermal equivalence assuming 38% conversion efficiency in a modern thermal power station".[ citation needed ]

In France, by convention, the ratio between primary energy and final energy in electricity amounts to 2.58, [27] corresponding to an efficiency of 38.8%.[ citation needed ]

In Germany, on the contrary, because of the swift development of the renewable energies, the ratio between primary energy and final energy in electricity amounts to only 1.8, [28] corresponding to an efficiency of 55.5%.[ citation needed ]

According to EcoPassenger, [29] overall electricity efficiency would amount to 34% in the UK, 36% in Germany and 29% in France. [30]

Data processing

According to association négaWatt, embodied energy related to digital services amounted to 3.5 TWh/a for networks and 10.0 TWh/a for data centres (half for the servers per se, i. e. 5 TWh/a, and the other half for the buildings in which they are housed, i. e. 5 TWh/a), figures valid in France, in 2015. The organization is optimistic about the evolution of the energy consumption in the digital field, underlining the technical progress being made. [31] The Shift Project , chaired by Jean-Marc Jancovici, contradicts the optimistic vision of the association négaWatt, and notes that the digital energy footprint is growing at 9% per year. [32]

See also

Related Research Articles

<span class="mw-page-title-main">Life-cycle assessment</span> Methodology for assessing environmental impacts

Life cycle assessment (LCA), also known as life cycle analysis, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), through the product's manufacture, distribution and use, to the recycling or final disposal of the materials composing it (grave).

<span class="mw-page-title-main">Input–output model</span> Quantitative economic model

In economics, an input–output model is a quantitative economic model that represents the interdependencies between different sectors of a national economy or different regional economies. Wassily Leontief (1906–1999) is credited with developing this type of analysis and earned the Nobel Prize in Economics for his development of this model.

<span class="mw-page-title-main">Green building</span> Structures and processes of building structures that are more environmentally responsible

Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. Green building also refers to saving resources to the maximum extent, including energy saving, land saving, water saving, material saving, etc., during the whole life cycle of the building, protecting the environment and reducing pollution, providing people with healthy, comfortable and efficient use of space, and being in harmony with nature. Buildings that live in harmony; green building technology focuses on low consumption, high efficiency, economy, environmental protection, integration and optimization.’

<span class="mw-page-title-main">Emission intensity</span> Emission rate of a pollutant

An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.

Greenhouse gas inventories are emission inventories of greenhouse gas emissions that are developed for a variety of reasons. Scientists use inventories of natural and anthropogenic (human-caused) emissions as tools when developing atmospheric models. Policy makers use inventories to develop strategies and policies for emissions reductions and to track the progress of those policies.

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Greenhouse gases emitted from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

This is a glossary of environmental science.

An economic input-output life-cycle assessment, or EIO-LCA involves the use of aggregate sector-level data to quantify the amount of environmental impact that can be directly attributed to each sector of the economy and how much each sector purchases from other sectors in producing its output. Combining such data sets can enable accounting for long chains, which somewhat alleviates the scoping problem of traditional life-cycle assessments. EIO-LCA analysis traces out the various economic transactions, resource requirements and environmental emissions required for producing a particular product or service.

<span class="mw-page-title-main">Environmental impact of the energy industry</span>

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.

Carbon profiling is a mathematical process that calculates how much carbon dioxide is put into the atmosphere per m2 of space in a building over one year. The analysis has two parts that are added together to produce an overall figure that is termed the 'carbon profile':

Greenhouse gas emissions are one of the environmental impacts of electricity generation. Measurement of life-cycle greenhouse gas emissions involves calculating the global warming potential (GWP) of energy sources through life-cycle assessment. These are usually sources of only electrical energy but sometimes sources of heat are evaluated. The findings are presented in units of global warming potential per unit of electrical energy generated by that source. The scale uses the global warming potential unit, the carbon dioxide equivalent, and the unit of electrical energy, the kilowatt hour (kWh). The goal of such assessments is to cover the full life of the source, from material and fuel mining through construction to operation and waste management.

<span class="mw-page-title-main">Embedded emissions</span> Measure of greenhouse gas emissions

One way of attributing greenhouse gas emissions is to measure the embedded emissions of goods that are being consumed. This is different from the question of to what extent the policies of one country to reduce emissions affect emissions in other countries. The UNFCCC measures emissions according to production, rather than consumption. Consequently, embedded emissions on imported goods are attributed to the exporting, rather than the importing, country. The question of whether to measure emissions on production instead of consumption is partly an issue of equity, i.e., who is responsible for emissions.

EcoProIT is a project initiated at Chalmers University of Technology at the department of Product and Production Development. The project aims to provide production engineers a tool for detailed ecological footprint analyses, which are becoming more important in terms of marketing and legislation. A published report by MIT in 2011 showed companies thought that environmental sustainable strategy is, or will be, vital to be competitive. The report included many sectors, e.g. covering medicals, automobiles and consumer products. EcoProIT will design a tool for industrial applications used for detailed environmental footprint analyses of their production systems and the products produced using simulation. The tool will simulate the production and analyze the product's environmental footprint in a standardized way. It will also be possible to use the tool for bench marking between different sites. The aim for the tool puts high requirements on standardized methods and data management.

The environmental impact of concrete, its manufacture, and its applications, are complex, driven in part by direct impacts of construction and infrastructure, as well as by CO2 emissions; between 4-8% of total global CO2 emissions come from concrete. Many depend on circumstances. A major component is cement, which has its own environmental and social impacts and contributes largely to those of concrete.

Environmentally extended input–output analysis (EEIOA) is used in environmental accounting as a tool which reflects production and consumption structures within one or several economies. As such, it is becoming an important addition to material flow accounting.

Life Cycle Climate Performance (LCCP) is an evolving method to evaluate the carbon footprint and global warming impact of heating, ventilation, air conditioning (AC), refrigeration systems, and potentially other applications such as thermal insulating foam. It is calculated as the sum of direct, indirect, and embodied greenhouse gas (GHG) emissions generated over the lifetime of the system “from cradle to grave,” i.e. from manufacture to disposal. Direct emissions include all climate forcing effects from the release of refrigerants into the atmosphere, including annual leakage and losses during service and disposal of the unit. Indirect emissions include the climate forcing effects of GHG emissions from the electricity powering the equipment. The embodied emissions include the climate forcing effects of the manufacturing processes, transport, and installation for the refrigerant, materials, and equipment, and for recycle or other disposal of the product at end of its useful life.

<span class="mw-page-title-main">Sangwon Suh</span> American industrial ecologist

Sangwon Suh is an American industrial ecologist.

The Waste Input-Output (WIO) model is an innovative extension of the environmentally extended input-output (EEIO) model. It enhances the traditional Input-Output (IO) model by incorporating physical waste flows generated and treated alongside monetary flows of products and services. In a WIO model, each waste flow is traced from its generation to its treatment, facilitated by an allocation matrix. Additionally, the model accounts for the transformation of waste during treatment into secondary waste and residues, as well as recycling and final disposal processes. By including the end-of-life (EoL) stage of products, the WIO model enables a comprehensive consideration of the entire product life cycle, encompassing production, use, and disposal stages within the IO analysis framework. As such, it serves as a valuable tool for life cycle assessment (LCA).

References

  1. Mirowski, Philip (1991). More Heat Than Light: Economics as Social Physics, Physics as Nature's Economics. Cambridge University Press. pp. 154–163. ISBN   978-0-521-42689-3.
  2. Martinez-Alier, J. (1990). Ecological Economics: Energy Environment and Society . Basil Blackwell. ISBN   978-0631171461.
  3. Weiner, Douglas R. (2000). Models of Nature: Ecology, Conservation, and Cultural Revolution in Soviet Russia. University of Pittsburgh Press. pp. 70–71, 78–82. ISBN   978-0-8229-7215-0.
  4. Leontief, W. (1966). Input-Output Economics. Oxford University Press. p. 134.
  5. Tennenbaum, Stephen E. (1988). Network Energy Expenditures for Subsystem Production (PDF) (MS). OCLC   20211746. Docket CFW-88-08. Archived from the original (PDF) on 30 September 2007.
  6. Hannon, B. (October 1973). "The Structure of ecosystems" (PDF). Journal of Theoretical Biology. 41 (3): 535–546. Bibcode:1973JThBi..41..535H. doi:10.1016/0022-5193(73)90060-X. PMID   4758118.
  7. Lenzen 2001
  8. 1 2 G.P.Hammond and C.I.Jones (2006) Embodied energy and carbon footprint database, Department of Mechanical Engineering, University of Bath, United Kingdom
  9. CSIRO on embodied energy: Australia's foremost scientific institution Archived 2006-02-25 at the Wayback Machine
  10. McCormack, M.; Treloar, G.J.; Palmowski, L.; Crawford, R. (2007). "Modelling direct and indirect water requirements of construction". Building Research and Information. 35 (2): 156–162. doi:10.1080/09613210601125383. S2CID   109032580.
  11. 1 2 Crawford, Robert; Stephan, André; Prideaux, Fabian (2019). EPiC database 2019. Melbourne, Australia: The University of Melbourne. ISBN   978-0-7340-5495-1. OCLC   1132202846.
  12. Crawford, R.H.; Bontinck, P.-A.; Stephan, A.; Wiedmann, T.; Yu, M. (2018). "Hybrid life cycle inventory methods – A review". Journal of Cleaner Production. 172: 1273–1288. doi:10.1016/j.jclepro.2017.10.176. hdl: 11343/194165 . S2CID   116770528.
  13. Chancel, Lucas; Pourouchottamin, Prabodh (March 2013). "L'énergie grise : la face cachée de nos consommations d'énergie". Propositions (in French). IDDRI.
  14. Jancovici, Jean-Marc (30 December 2017). "Pour un bilan carbone des projets d'infrastructures de transport" (in French).
  15. 1 2 (de) Volkswagen environmental report 2001/2002 Archived 2016-03-03 at the Wayback Machine see page 27
  16. (fr) Life cycle assessment Archived 26 July 2015 at the Wayback Machine website www.ademe.fr see page 9
  17. (fr) Science & Vie # 1213 October 2018. see pages 48 till 51.
  18. (de) Final energy analysis: gasoline vs. electromobility website springerprofessional.de
  19. energy-and-road-construction website www.pavementinteractive.org
  20. Treloar, Graham; Crawford, Robert (2004). "Hybrid Life-Cycle Inventory for Road Construction and Use". Journal of Construction Engineering and Management. 130 (1): 43–49. doi:10.1061/(ASCE)0733-9364(2004)130:1(43).
  21. "Understanding the lifespan of a Japanese home or apartment". JAPAN PROPERTY CENTRAL. 7 February 2014. Archived from the original on 4 July 2019.
  22. Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. (1 November 2013). "Operational vs. embodied emissions in buildings—A review of current trends". Energy and Buildings. 66: 232–245. doi:10.1016/j.enbuild.2013.07.026.
  23. Stephan, André; Crawford, Robert H.; de Myttenaere, Kristel (2012). "Towards a comprehensive life cycle energy analysis framework for residential buildings". Energy and Buildings. 55: 592–600. doi:10.1016/j.enbuild.2012.09.008. ISSN   0378-7788.
  24. Stephan, André; Crawford, Robert H.; de Myttenaere, Kristel (2013). "A comprehensive assessment of the life cycle energy demand of passive houses". Applied Energy. 112: 23–34. doi:10.1016/j.apenergy.2013.05.076.
  25. Stephan, André; Crawford, Robert H.; Bunster, Victor; Warren‐Myers, Georgia; Moosavi, Sareh (2022). "Towards a multiscale framework for modeling and improving the life cycle environmental performance of built stocks". Journal of Industrial Ecology. 26 (4): 1195–1217. doi:10.1111/jiec.13254. ISSN   1088-1980.
  26. Bastos, Joana; Batterman, Stuart A.; Freire, Fausto (18 May 2016). "Significance of mobility in the life-cycle assessment of buildings". Building Research & Information. 44 (4): 376–393. doi:10.1080/09613218.2016.1097407. ISSN   0961-3218.
  27. (fr) "Decree of 15th September 2006 on the energy performance diagnosis of existing buildings for sale in mainland France", website legifrance.gouv.fr
  28. (de) laws in Internet Archived 31 July 2020 at the Wayback Machine site web gesetze-im-internet.de see section 2.1.1
  29. EcoPassenger website ecopassenger.org, run by International Union of Railways.
  30. EcoPassenger Environmental Methodology and DataUpdate 2016 website ecopassenger.hafas.de; see page 15, table 2-3.
  31. (fr) Will digital revolution increase our energy consumption? website decrypterlenergie.org, website of association négaWatt.
  32. (fr) Lean ITC website theshiftproject.org; see page 4.

Bibliography