Petrol engine

Last updated
W16 petrol engine of the Bugatti Veyron Volkswagen W16.jpg
W16 petrol engine of the Bugatti Veyron

Petrol engine (British English) or gasoline engine (American English) is an internal combustion engine with spark-ignition, designed to run on petrol (gasoline) and similar volatile fuels.

Contents

In most petrol engines, the fuel and air are usually pre-mixed before compression (although some modern petrol engines now use cylinder-direct petrol injection). The pre-mixing was formerly done in a carburetor, but now it is done by electronically controlled fuel injection, except in small engines where the cost/complication of electronics does not justify the added engine efficiency. The process differs from a diesel engine in the method of mixing the fuel and air, and in using spark plugs to initiate the combustion process. In a diesel engine, only air is compressed (and therefore heated), and the fuel is injected into very hot air at the end of the compression stroke, and self-ignites.

History

The first practical petrol engine was built in 1876 in Germany by Nicolaus August Otto, [1] although there had been earlier attempts by Étienne Lenoir, Siegfried Marcus, Julius Hock, and George Brayton. [2]

Compression ratio

With both air and fuel in a closed cylinder, compressing the mixture too much poses the danger of auto-ignition — or behaving like a compression-ignition engine. Because of the difference in burn rates between the two different fuels, petrol engines are mechanically designed with different timing than diesels, so to auto-ignite a petrol engine causes the expansion of gas inside the cylinder to reach its greatest point before the cylinder has reached the top dead center (TDC) position. Spark plugs are typically set statically or at idle at a minimum of 10 degrees or so of crankshaft rotation before the piston reaches TDC, but at much higher values at higher engine speeds to allow time for the fuel-air charge to substantially complete combustion before too much expansion has occurred - gas expansion occurring with the piston moving down in the power stroke. Higher octane petrol burns slower, therefore it has a lower propensity to auto-ignite and its rate of expansion is lower. Thus, engines designed to run high-octane fuel exclusively can achieve higher compression ratios (CRs).

Most modern automobile petrol engines generally have a compression ratio of 10.0:1 to 13.5:1. Engines with a knock sensor can and usually have CR higher than 11.1:1 and approaches 14.0:1 (for high octane fuel and usually with direct fuel injection) and engines without a knock sensor generally have CR of 8.0:1 to 10.5:1. [3] [4]

Speed and efficiency

Petrol engines run at higher rotation speeds than diesels, partially due to their lighter pistons, connecting rods and crankshaft (a design efficiency made possible by lower compression ratios) and due to petrol burning more quickly than diesel.

Because pistons in petrol engines tend to have much shorter strokes than pistons in diesel engines, typically it takes less time for a piston in a petrol engine to complete its stroke than a piston in a diesel engine. However, the lower compression ratios of petrol engines give petrol engines lower efficiency than diesel engines.

Typically, most petrol engines have approximately 20%(avg.) thermal efficiency, which is nearly half of diesel engines. However some newer engines are reported to be much more efficient (thermal efficiency up to 38%) than previous spark-ignition engines. [5]

Applications

Current

Petrol engines have many applications, including:

Historical

Before the use of diesel engines became widespread, petrol engines were used in buses, lorries (trucks) and a few railway locomotives. Examples:

Design

Working cycles

Four-stroke petrol engine 4StrokeEngine Ortho 3D Small.gif
Four-stroke petrol engine

Petrol engines may run on the four-stroke cycle or the two-stroke cycle. For details of working cycles see:

Cylinder arrangement

Common cylinder arrangements are from 1 to 6 cylinders in-line or from 2 to 12 cylinders in V-formation. Flat engines – like a V design flattened out – are common in small airplanes and motorcycles and were a hallmark of Volkswagen automobiles into the 1990s. Flat 6s are still used in many modern Porsches, as well as Subarus. Many flat engines are air-cooled. Less common, but notable in vehicles designed for high speeds is the W formation, similar to having 2 V engines side by side. Alternatives include rotary and radial engines the latter typically have 7 or 9 cylinders in a single ring, or 10 or 14 cylinders in two rings.

Cooling

Petrol engines may be air-cooled, with fins (to increase the surface area on the cylinders and cylinder head); or liquid-cooled, by a water jacket and radiator. The coolant was formerly water, but is now usually a mixture of water and either ethylene glycol or propylene glycol. These mixtures have lower freezing points and higher boiling points than pure water and also prevent corrosion, with modern antifreezes also containing lubricants and other additives to protect water pump seals and bearings. The cooling system is usually slightly pressurized to further raise the boiling point of the coolant.

Ignition

Petrol engines use spark ignition and high voltage current for the spark may be provided by a magneto or an ignition coil. In modern car engines the ignition timing is managed by an electronic Engine Control Unit.

Power measurement

The most common way of engine rating is what is known as the brake power, measured at the flywheel, and given in metric horsepower or kilowatts (metric), or in horsepower (Imperial/USA). This is the actual mechanical power output of the engine in a usable and complete form. The term "brake" comes from the use of a brake in a dynamometer test to load the engine. For accuracy, it is important to understand what is meant by usable and complete. For example, for a car engine, apart from friction and thermodynamic losses inside the engine, power is absorbed by the water pump, alternator, and radiator fan, thus reducing the power available at the flywheel to move the car along. Power is also absorbed by the power steering pump and air conditioner's compressor (if fitted), but these are not installed during a power output test or calculation. Power output varies slightly according to the energy value of the fuel, the ambient air temperature and humidity, and the altitude. Therefore, there are agreed standards in the USA and Europe on the fuel to use when testing, and engines are rated at 25 ⁰C (Europe), and 64 ⁰F (USA) [6] at sea level, 50% humidity. Marine engines, as supplied, usually have no radiator fan, and often no alternator. In such cases the quoted power rating does not allow for losses in the radiator fan and alternator. The Society of Automotive Engineers (SAE) in the US, and the International Organization for Standardization (ISO) in Europe, publish standards on exact procedures, and how to apply corrections for non-standard conditions such as altitude above sea level.

Car testers are most familiar with the chassis dynamometer or "rolling road" installed in many workshops. This measures drive wheel brake horsepower, which is generally 15-20% less than the brake horsepower measured at the crankshaft or flywheel on an engine dynamometer. [7]

See also

Related Research Articles

Compression ratio The ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

In a combustion engine, the static compression ratio is calculated based on the relative volumes of the combustion chamber and the cylinder; that is, the ratio between the volume of the cylinder and combustion chamber when the piston is at the bottom of its stroke, and the volume of the combustion chamber when the piston is at the top of its stroke. The dynamic compression ratio is a more advanced calculation which also takes into account gasses entering and exiting the cylinder during the compression phase. The compression ratio is a fundamental specification for combustion engines.

Diesel engine Type of internal combustion engine

The diesel engine, named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to the mechanical compression; thus, the diesel engine is a so-called compression-ignition engine. This contrasts with engines using spark plug-ignition of the air-fuel mixture, such as a petrol engine or a gas engine.

Reciprocating engine Engine utilising one or more reciprocating pistons.

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the niche application Stirling engine. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

Miller cycle

In engineering, the Miller cycle is a thermodynamic cycle used in a type of internal combustion engine. The Miller cycle was patented by Ralph Miller, an American engineer, US patent 2817322 dated Dec 24, 1957. The engine may be two- or four-stroke and may be run on diesel fuel, gases, or dual fuel.

Two-stroke engine

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during only one crankshaft revolution. This is in contrast to a "four-stroke engine", which requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

Four-stroke engine Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust valve.

Knocking in spark ignition internal combustion engines occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel-air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. The shock wave creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential to completely destructive.

In the context of an internal combustion engine, the term stroke has the following related meanings

Variable compression ratio is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase fuel efficiency while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available vehicle that uses a variable compression ratio engine.

A spark-ignition engine is an internal combustion engine, generally a petrol engine, where the combustion process of the air-fuel mixture is ignited by a spark from a spark plug. This is in contrast to compression-ignition engines, typically diesel engines, where the heat generated from compression together with the injection of fuel is enough to initiate the combustion process, without needing any external spark.

Hot-bulb engine

The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

Ignition timing

In a spark ignition internal combustion engine, Ignition timing refers to the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

Model engine

A model engine is a small internal combustion engine typically used to power a radio-controlled aircraft, radio-controlled car, radio-controlled boat, free flight, control line aircraft, or ground-running tether car model.

The term six-stroke engine has been applied to a number of alternative internal combustion engine designs that attempt to improve on traditional two-stroke and four-stroke engines. Claimed advantages may include increased fuel efficiency, reduced mechanical complexity and/or reduced emissions. These engines can be divided into two groups based on the number of pistons that contribute to the six strokes.

The following outline is provided as an overview of and topical guide to automobiles:

Free-piston engine

A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device and a load device.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

Internal combustion engine Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful work. This replaced the external combustion engine for applications where weight or size of the engine is important.

References

  1. CA 6479 "Gas Motor Engine"
  2. "Who Invented the Car?".
  3. "Energy efficiency of vehicles". www.hk-phy.org. Retrieved 2017-10-07.
  4. "Direct Fuel Injection - What It Is and How It Works". ThoughtCo. Retrieved 2017-10-07.
  5. "Toyota Gasoline Engine Achieves Thermal Efficiency Of 38 Percent". Green Car Reports. Retrieved 2017-10-07.
  6. "Regulations and Standards". EPA. EPA. Retrieved 11 April 2016.
  7. https://www.youtube.com/watch?v=WkqbTIM5RbI&t=3m39s