Inlet manifold

Last updated
Carburetors used as intake runners 1961 Ferrari 250 TR 61 Spyder Fantuzzi engine.jpg
Carburetors used as intake runners
A cutaway view of the intake of the original Fordson tractor (including the intake manifold, vaporizer, carburetor, and fuel lines) Manly 1919 Fig 133 Fordson intake.png
A cutaway view of the intake of the original Fordson tractor (including the intake manifold, vaporizer, carburetor, and fuel lines)

An inlet manifold or intake manifold (in American English) is the part of an internal combustion engine that supplies the fuel/air mixture to the cylinders. [1] The word manifold comes from the Old English word manigfeald (from the Anglo-Saxon manig [many] and feald [repeatedly]) and refers to the multiplying of one (pipe) into many. [2]

Contents

In contrast, an exhaust manifold collects the exhaust gases from multiple cylinders into a smaller number of pipes – often down to one pipe.

The primary function of the intake manifold is to evenly distribute the combustion mixture (or just air in a direct injection engine) to each intake port in the cylinder head(s). Even distribution is important to optimize the efficiency and performance of the engine. It may also serve as a mount for the carburetor, throttle body, fuel injectors and other components of the engine.

Due to the downward movement of the pistons and the restriction caused by the throttle valve, in a reciprocating spark ignition piston engine, a partial vacuum (lower than atmospheric pressure) exists in the intake manifold. This manifold vacuum can be substantial, and can be used as a source of automobile ancillary power to drive auxiliary systems: power assisted brakes, emission control devices, cruise control, ignition advance, windshield wipers, power windows, ventilation system valves, etc.

This vacuum can also be used to draw any piston blow-by gases from the engine's crankcase. This is known as a positive crankcase ventilation system, in which the gases are burned with the fuel/air mixture.

The intake manifold has historically been manufactured from aluminium or cast iron, but use of composite plastic materials is gaining popularity (e.g. most Chrysler 4-cylinders, Ford Zetec 2.0, Duratec 2.0 and 2.3, and GM's Ecotec series).

Turbulence

The carburetor or the fuel injectors spray fuel droplets into the air in the manifold. Due to electrostatic forces and condensation from the boundary layer, some of the fuel will form into pools along the walls of the manifold, and due to surface tension of the fuel, small droplets may combine into larger droplets in the airstream. Both actions are undesirable because they create inconsistencies in the air-fuel ratio. Turbulence in the intake helps to break up fuel droplets, improving the degree of atomization. Better atomization allows for a more complete burn of all the fuel and helps reduce engine knock by enlarging the flame front. To achieve this turbulence it is a common practice to leave the surfaces of the intake and intake ports in the cylinder head rough and unpolished.

Only a certain degree of turbulence is useful in the intake. Once the fuel is sufficiently atomized, additional turbulence causes unneeded pressure drops and a drop in engine performance.

Volumetric efficiency

Comparison of a stock intake manifold for a Volkswagen 1.8T engine (top) to a custom-built one used in competition (bottom). In the custom-built manifold, the runners to the intake ports on the cylinder head are much wider and more gently tapered. This difference improves the volumetric efficiency of the engine's fuel/air intake. Manifold comparison.jpg
Comparison of a stock intake manifold for a Volkswagen 1.8T engine (top) to a custom-built one used in competition (bottom). In the custom-built manifold, the runners to the intake ports on the cylinder head are much wider and more gently tapered. This difference improves the volumetric efficiency of the engine's fuel/air intake.

The design and orientation of the intake manifold is a major factor in the volumetric efficiency of an engine. Abrupt contour changes provoke pressure drops, resulting in less air (and/or fuel) entering the combustion chamber; high-performance manifolds have smooth contours and gradual transitions between adjacent segments.

Modern intake manifolds usually employ runners, individual tubes extending to each intake port on the cylinder head which emanate from a central volume or "plenum" beneath the carburetor. The purpose of the runner is to take advantage of the Helmholtz resonance property of air. Air flows at considerable speed through the open valve. When the valve closes, the air that has not yet entered the valve still has a lot of momentum and compresses against the valve, creating a pocket of high pressure. This high-pressure air begins to equalize with lower-pressure air in the manifold. Due to the air's inertia, the equalization will tend to oscillate: At first the air in the runner will be at a lower pressure than the manifold. The air in the manifold then tries to equalize back into the runner, and the oscillation repeats. This process occurs at the speed of sound, and in most manifolds travels up and down the runner many times before the valve opens again.

The smaller the cross-sectional area of the runner, the higher the pressure changes on resonance for a given airflow. This aspect of Helmholtz resonance reproduces one result of the Venturi effect. When the piston accelerates downwards, the pressure at the output of the intake runner is reduced. This low pressure pulse runs to the input end, where it is converted into an over-pressure pulse. This pulse travels back through the runner and rams air through the valve. The valve then closes.

To harness the full power of the Helmholtz resonance effect, the opening of the intake valve must be timed correctly, otherwise the pulse could have a negative effect. This poses a very difficult problem for engines, since valve timing is dynamic and based on engine speed, whereas the pulse timing is static and dependent on the length of the intake runner and the speed of sound. The traditional solution has been to tune the length of the intake runner for a specific engine speed where maximum performance is desired. However, modern technology has given rise to a number of solutions involving electronically controlled valve timing (for example Valvetronic), and dynamic intake geometry (see below).

As a result of "resonance tuning", some naturally aspirated intake systems operate at a volumetric efficiency above 100%: the air pressure in the combustion chamber before the compression stroke is greater than the atmospheric pressure. In combination with this intake manifold design feature, the exhaust manifold design, as well as the exhaust valve opening time can be so calibrated as to achieve greater evacuation of the cylinder. The exhaust manifolds achieve a vacuum in the cylinder just before the piston reaches top dead center.[ citation needed ] The opening inlet valve can then—at typical compression ratios—fill 10% of the cylinder before beginning downward travel.[ citation needed ] Instead of achieving higher pressure in the cylinder, the inlet valve can stay open after the piston reaches bottom dead center while the air still flows in.[ citation needed ][ vague ]

In some engines the intake runners are straight for minimal resistance. In most engines, however, the runners have curves, some very convoluted to achieve desired runner length. These turns allow for a more compact manifold, with denser packaging of the whole engine, as a result. Also, these "snaked" runners are needed for some variable length/ split runner designs, and allow the size of the plenum to be reduced. In an engine with at least six cylinders the averaged intake flow is nearly constant and the plenum volume can be smaller. To avoid standing waves within the plenum it is made as compact as possible. The intake runners each use a smaller part of the plenum surface than the inlet, which supplies air to the plenum, for aerodynamic reasons. Each runner is placed to have nearly the same distance to the main inlet. Runners whose cylinders fire close after each other, are not placed as neighbors.

In 180-degree intake manifolds, originally designed for carburetor V8 engines, the two plane, the split plenum intake manifold separates the intake pulses which the manifold experiences by 180 degrees in the firing order. This minimizes interference of one cylinder's pressure waves with those of another, giving better torque from smooth mid-range flow. Such manifolds may have been originally designed for either two- or four-barrel carburetors, but now are used with both throttle-body and multi-point fuel injection. An example of the latter is the Honda J engine which converts to a single plane manifold around 3500 rpm for greater peak flow and horsepower.

Older heat riser manifolds with 'wet runners' for carbureted engines used exhaust gas diversion through the intake manifold to provide vaporizing heat. The amount of exhaust gas flow diversion was controlled by a heat riser valve in the exhaust manifold, and employed a bi-metallic spring which changed tension according to the heat in the manifold. Today's fuel-injected engines do not require such devices.

Variable-length intake manifold

Lower intake manifold on a 1999 Mazda Miata engine, showing components of a variable length intake system. Lower-intake-manifold.jpg
Lower intake manifold on a 1999 Mazda Miata engine, showing components of a variable length intake system.

A variable-length intake manifold (VLIM) is an internal combustion engine manifold technology. Four common implementations exist. First, two discrete intake runners with different length are employed, and a butterfly valve can close the short path. Second the intake runners can be bent around a common plenum, and a sliding valve separates them from the plenum with a variable length. Straight high-speed runners can receive plugs, which contain small long runner extensions. The plenum of a 6- or 8-cylinder engine can be parted into halves, with the even firing cylinders in one half and the odd firing cylinders in the other part. Both sub-plenums and the air intake are connected to an Y (sort of main plenum). The air oscillates between both sub-plenums, with a large pressure oscillation there, but a constant pressure at the main plenum. Each runner from a sub plenum to the main plenum can be changed in length. For V engines this can be implemented by parting a single large plenum at high engine speed by means of sliding valves into it when speed is reduced.

As the name implies, VLIM can vary the length of the intake tract in order to optimize power and torque, as well as provide better fuel efficiency.

There are two main effects of variable intake geometry:

Many automobile manufacturers use similar technology with different names. Another common term for this technology is variable resonance induction system (VRIS).

Vehicles using variable intake geometry

See also

Related Research Articles

<span class="mw-page-title-main">Carburetor</span> Component of internal combustion engines which mixes air and fuel in a controlled ratio

A carburetor is a device used by a gasoline internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in the main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances.

<span class="mw-page-title-main">Miller cycle</span> Thermodynamic cycle

In engineering, the Miller cycle is a thermodynamic cycle used in a type of internal combustion engine. The Miller cycle was patented by Ralph Miller, an American engineer, U.S. patent 2,817,322 dated Dec 24, 1957. The engine may be two- or four-stroke and may be run on diesel fuel, gases, or dual fuel. It uses a supercharger to offset the performance loss of the Atkinson cycle.

Volumetric efficiency (VE) in internal combustion engine engineering is defined as the ratio of the equivalent volume of the fresh air drawn into the cylinder during the intake stroke to the volume of the cylinder itself. The term is also used in other engineering contexts, such as hydraulic pumps and electronic components.

<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Variable-length intake manifold</span>

In internal combustion engines, a variable-length intake manifold (VLIM),variable intake manifold (VIM), or variable intake system (VIS) is an automobile internal combustion engine manifold technology. As the name implies, VLIM/VIM/VIS can vary the length of the intake tract in order to optimise power and torque across the range of engine speed operation, as well as to help provide better fuel efficiency. This effect is often achieved by having two separate intake ports, each controlled by a valve, that open two different manifolds – one with a short path that operates at full engine load, and another with a significantly longer path that operates at lower load. The first patent issued for a variable length intake manifold was published in 1958, US Patent US2835235 by Daimler Benz AG.

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

The GM Ecotec engine, also known by its codename L850, is a family of all-aluminium inline-four engines, displacing between 1.4 and 2.5 litres. Confusingly, the Ecotec name was also applied to both the Buick V6 Engine when used in Holden Vehicles, as well as the final DOHC derivatives of the previous GM Family II engine; the architecture was substantially re-engineered for this new Ecotec application produced since 2000. This engine family replaced the GM Family II engine, the GM 122 engine, the Saab H engine, and the Quad 4 engine. It is manufactured in multiple locations, to include Spring Hill Manufacturing, in Spring Hill, Tennessee, with engine blocks and cylinder heads cast at Saginaw Metal Casting Operations in Saginaw, Michigan.

<span class="mw-page-title-main">Ford Modular engine</span> Engine family produced by Ford Motor Company

The Ford Modular engine is Ford Motor Company's overhead camshaft (OHC) V8 and V10 gasoline-powered small block engine family. Introduced in 1990, the engine family received its “modular” designation by Ford for its new approach to the setup of tooling and casting stations in the Windsor and Romeo engine manufacturing plants.

<span class="mw-page-title-main">Ford Essex V6 engine (UK)</span> Reciprocating internal combustion engine

The Ford Essex V6 engine is a 60° V6 engine built between 1966 and 1988 by the Ford Motor Company in the United Kingdom and until 2000 in South Africa although mostly in the Ford engine plant of Dagenham, Essex, which gave the engine its name. It is closely related to the Ford Essex V4 engine produced in displacements of 1.7 L and 2.0 L. Both engines share many parts since the Essex V6 was directly derived from the Essex V4; the 2.0 L Essex V4 and the 3.0 L Essex V6 in fact have exactly the same bore and stroke and share various components. In the same era, the Ford Cologne V6 engine was produced.

<span class="mw-page-title-main">Mazda F engine</span> Reciprocating internal combustion engine

The F engine family from Mazda is a mid-sized inline-four piston engine with iron block, alloy head and belt-driven SOHC and DOHC configurations. Introduced in 1983 as the 1.6-litre F6, this engine was found in the Mazda B-Series truck and Mazda G platform models such as Mazda 626/Capella as well as many other models internationally including Mazda Bongo and Ford Freda clone, Mazda B-series based Ford Courier, Mazda 929 HC and the GD platform-based Ford Probe

<span class="mw-page-title-main">Mazda K engine</span> Japanese V6 car engine design

The Mazda K-series automobile engine is a short stroke 60° 24-valve V6 with belt-driven DOHC and all-aluminium construction. Displacements range from 1.8 L to 2.5 L. They all use a 27-degree DOHC valvetrain with directly actuated hydraulic bucket lifters. The K-series also features a highly rigid aluminum split-crankcase engine block design with 4-bolt mains with additional bolts securing the lower block, an internally balanced forged steel crankshaft with lightweight powder forged carbon steel connecting rods. They were designed with the intent of being as compact as possible for short-hood front-wheel drive applications.

<span class="mw-page-title-main">Ford Essex V6 engine (Canadian)</span> Reciprocating internal combustion engine

The Essex V6 is a 90° V6 engine family built by the Ford Motor Company at the Essex Engine Plant in Windsor, Ontario, Canada. This engine is unrelated to Ford's British Essex V6. Introduced in 1982, versions of the Essex V6 engine family were used in subcompact through to large cars, vans, minivans, and some pickup trucks. The Essex V6 was last used in the 2008 regular-cab F-150, after which it was succeeded by a version of the Ford Cyclone engine. An industrial version of the engine was available until 2015.

<span class="mw-page-title-main">Exhaust manifold</span> Structure collecting an engines exhaust outlets

In automotive engineering, an exhaust manifold collects the exhaust gases from multiple cylinders into one pipe. The word manifold comes from the Old English word manigfeald and refers to the folding together of multiple inputs and outputs.

<span class="mw-page-title-main">Multi-valve</span> Type of car engine

In automotive engineering a multi-valve or multivalve engine is one where each cylinder has more than two valves. A multi-valve engine has better breathing and may be able to operate at higher revolutions per minute (RPM) than a two-valve engine, delivering more power.

<span class="mw-page-title-main">Honda C engine</span> Reciprocating internal combustion engine

Honda's first production V6 was the C series; it was produced in displacements from 2.0 to 3.5 liters. The C engine was produced in various forms for over 20 years (1985–2005), having first been used in the KA series Legend model, and its British sister car the Rover 800-series.

<span class="mw-page-title-main">Gasoline direct injection</span> Mixture formation system

Gasoline direct injection (GDI), also known as petrol direct injection (PDI), is a mixture formation system for internal combustion engines that run on gasoline (petrol), where fuel is injected into the combustion chamber. This is distinct from manifold injection systems, which inject fuel into the intake manifold.

<span class="mw-page-title-main">Alfa Romeo Twin Spark engine</span> Reciprocating internal combustion engine

Alfa Romeo Twin Spark (TS) technology was used for the first time in the Alfa Romeo Grand Prix car in 1914. In the early 1960s it was used in their race cars (GTA, TZ) to enable it to achieve a higher power output from its engines. And in the early and middle 1980s, Alfa Romeo incorporated this technology into their road cars to enhance their performance and to comply with stricter emission controls.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

<span class="mw-page-title-main">Honda F engine</span> Reciprocating internal combustion engine

The Honda F-Series engine was considered Honda's "big block" SOHC inline four, though lower production DOHC versions of the F-series were built. It features a solid iron or aluminum open deck cast iron sleeved block and aluminum/magnesium cylinder head.

<span class="mw-page-title-main">Nissan VR engine</span> Reciprocating internal combustion engine

The VR is a series of twin-turbo DOHC V6 automobile engines from Nissan with displacements of 3.0 and 3.8 L. An evolution of the widely successful VQ series, it also draws on developments from the VRH, JGTC, and Nissan R390 GT1 Le Mans racing engines.

References

  1. "What Is an Intake Manifold? • STATE OF SPEED". STATE OF SPEED. 2018-11-10. Retrieved 2022-02-03.
  2. manifold, (adv.) "in the proportion of many to one, by many times". AD1526 Oxford English Dictionary,
  3. Volvoclub UK: 850GLT Engine Info