The rotary engine is an early type of internal combustion engine, usually designed with an odd number of cylinders per row in a radial configuration. The engine's crankshaft remained stationary in operation, while the entire crankcase and its attached cylinders rotated around it as a unit. Its main application was in aviation, although it also saw use in a few early motorcycles and automobiles.
This type of engine was widely used as an alternative to conventional inline engines (straight or V) during World War I and the years immediately preceding that conflict. It has been described as "a very efficient solution to the problems of power output, weight, and reliability". [1]
By the early 1920s, the inherent limitations of this type of engine had rendered it obsolete.
A rotary engine is essentially a standard Otto cycle engine, with cylinders arranged radially around a central crankshaft just like a conventional radial engine, but instead of having a fixed cylinder block with rotating crankshaft, the crankshaft remains stationary and the entire cylinder block rotates around it. In the most common form, the crankshaft was fixed solidly to the airframe, and the propeller was simply bolted to the front of the crankcase.
This difference also has much impact on design (lubrication, ignition, fuel admission, cooling, etc.) and functioning (see below).
The Musée de l'Air et de l'Espace in Paris has on display a special, "sectioned" working model of an engine with seven radially disposed cylinders. It alternates between rotary and radial modes to demonstrate the difference between the internal motions of the two types of engine. [2]
Like "fixed" radial engines, rotaries were generally built with an odd number of cylinders (usually 5, 7 or 9), so that a consistent every-other-piston firing order could be maintained, to provide smooth running. Rotary engines with an even number of cylinders were mostly of the "two row" type.
Most rotary engines were arranged with the cylinders pointing outwards from a single crankshaft, in the same general form as a radial, but there were also rotary boxer engines [3] and even one-cylinder rotaries.
Three key factors contributed to the rotary engine's success at the time: [4]
Engine designers had always been aware of the many limitations of the rotary engine, so when static style engines became more reliable and gave better specific weights and fuel consumption, the days of the rotary engine were numbered.
The late World War I Bentley BR2 was the largest and most powerful rotary engine; it reached a point beyond which this type of engine could not be further developed, [6] and it was the last of its kind to be adopted into RAF service.
It is often asserted that rotary engines had no throttle and hence power could only be reduced by intermittently cutting the ignition using a "blip" switch. This was only true of the "Monosoupape" (single valve) type, which took most of the air into the cylinder through the exhaust valve, which remained open for a portion of the downstroke of the piston. Thus the mixture of fuel and air in the cylinder could not be controlled via the crankcase intake. The "throttle" (fuel valve) of a monosoupape provided only a limited degree of speed regulation, as opening it made the mixture too rich, while closing it made it too lean (in either case quickly stalling the engine, or damaging the cylinders). Early models featured a pioneering form of variable valve timing in an attempt to give greater control, but this caused the valves to burn and therefore it was abandoned. [7]
The only way of running a Monosoupape engine smoothly at reduced revs was with a switch that changed the normal firing sequence so that each cylinder fired only once per two or three engine revolutions, but the engine remained more or less in balance. [8] As with excessive use of the "blip" switch: running the engine on such a setting for too long resulted in large quantities of unburned fuel and oil in the exhaust, and gathering in the lower cowling, where it was a notorious fire hazard.
Most rotaries had normal inlet valves, so that the fuel (and lubricating oil) was taken into the cylinders already mixed with air - as in a normal four-stroke engine. Although a conventional carburetor, with the ability to keep the fuel/air ratio constant over a range of throttle openings, was precluded by the spinning crankcase; it was possible to adjust the air supply through a separate flap valve or "bloctube". The pilot needed to set the throttle to the desired setting (usually full open) and then adjust the fuel/air mixture to suit using a separate "fine adjustment" lever that controlled the air supply valve (in the manner of a manual choke control). Due to the rotary engine's large rotational inertia, it was possible to adjust the appropriate fuel/air mixture by trial and error without stalling it, although this varied between different types of engine, and in any case it required a good deal of practice to acquire the necessary knack. After starting the engine with a known setting that allowed it to idle, the air valve was opened until maximum engine speed was obtained.
Throttling a running engine back to reduce revs was possible by closing off the fuel valve to the required position while re-adjusting the fuel/air mixture to suit. This process was also tricky, so that reducing power, especially when landing, was often accomplished instead by intermittently cutting the ignition using the blip switch.
Cutting cylinders using ignition switches had the drawback of letting fuel continue to pass through the engine, oiling up the spark plugs and making smooth restarting problematic. Also, the raw oil-fuel mix could collect in the cowling. As this could cause a serious fire when the switch was released, it became common practice for part or all of the bottom of the basically circular cowling on most rotary engines to be cut away, or fitted with drainage slots.
By 1918 a Clerget handbook advised maintaining all necessary control by using the fuel and air controls, and starting and stopping the engine by turning the fuel on and off. The recommended landing procedure involved shutting off the fuel using the fuel lever, while leaving the blip switch on. The windmilling propeller made the engine continue to spin without delivering any power as the aircraft descended. It was important to leave the ignition on to allow the spark plugs to continue to spark and keep them from oiling up, so that the engine could (if all went well) be restarted simply by re-opening the fuel valve. Pilots were advised to not use an ignition cut out switch, as it would eventually damage the engine. [7]
Pilots of surviving or reproduction aircraft fitted with rotary engines still find that the blip switch is useful while landing, as it provides a more reliable, quicker way to initiate power if needed, rather than risk a sudden engine stall, or the failure of a windmilling engine to restart at the worst possible moment.
Félix Millet showed a 5-cylinder rotary engine built into a bicycle wheel at the Exposition Universelle in Paris in 1889. Millet had patented the engine in 1888, so must be considered the pioneer of the internal combustion rotary engine. A machine powered by his engine took part in the Paris-Bordeaux-Paris race of 1895 and the system was put into production by Darracq and Company London in 1900. [9]
Lawrence Hargrave first developed a rotary engine in 1889 using compressed air, intending to use it in powered flight. Materials weight and lack of quality machining prevented it becoming an effective power unit. [10]
Stephen M. Balzer of New York, a former watchmaker, constructed rotary engines in the 1890s. [11] He was interested in the rotary layout for two main reasons:
Balzer produced a 3-cylinder, rotary engined car in 1894, then later became involved in Langley's Aerodrome attempts, which bankrupted him while he tried to make much larger versions of his engines. Balzer's rotary engine was later converted to static radial operation by Langley's assistant, Charles M. Manly, creating the notable Manly–Balzer engine.
The famous De Dion-Bouton company produced an experimental 4-cylinder rotary engine in 1899. Though intended for aviation use, it was not fitted to any aircraft. [9]
The Adams-Farwell firm's automobiles, with the firm's first rolling prototypes using 3-cylinder rotary engines designed by Fay Oliver Farwell in 1898, led to production Adams-Farwell cars with first the 3-cylinder, then very shortly thereafter 5-cylinder rotary engines later in 1906, as another early American automaker utilizing rotary engines expressly manufactured for automotive use. Emil Berliner sponsored its development of the 5-cylinder Adams-Farwell rotary engine design concept as a lightweight power unit for his unsuccessful helicopter experiments. Adams-Farwell engines later powered fixed-wing aircraft in the US after 1910. It has also been asserted that the Gnôme design was derived from the Adams-Farwell, since an Adams-Farwell car is reported to have been demonstrated to the French Army in 1904. In contrast to the later Gnôme engines, and much like the later Clerget 9B and Bentley BR1 aviation rotaries, the Adams-Farwell rotaries had conventional exhaust and inlet valves mounted in the cylinder heads. [9]
The Gnome engine was the work of the three Seguin brothers, Louis, Laurent and Augustin. They were talented engineers and the grandsons of famous French engineer Marc Seguin. In 1906 the eldest brother, Louis, had formed the Société des Moteurs Gnome [12] to build stationary engines for industrial use, having licensed production of the Gnom single-cylinder stationary engine from Motorenfabrik Oberursel—who, in turn, built licensed Gnome engines for German aircraft during World War I.
Louis was joined by his brother Laurent who designed a rotary engine specifically for aircraft use, using Gnom engine cylinders. The brothers' first experimental engine is said to have been a 5-cylinder model that developed 34 hp (25 kW), and was a radial rather than rotary engine, but no photographs survive of the five-cylinder experimental model. The Seguin brothers then turned to rotary engines in the interests of better cooling, and the world's first production rotary engine, the 7-cylinder, air-cooled 50 hp (37 kW) "Omega" was shown at the 1908 Paris automobile show. The first Gnome Omega built still exists, and is now in the collection of the Smithsonian's National Air and Space Museum. [13] The Seguins used the highest strength material available - recently developed nickel steel alloy - and kept the weight down by machining components from solid metal, using the best American and German machine tools to create the engine's components; the cylinder wall of a 50 hp Gnome was only 1.5 mm (0.059 inches) thick, while the connecting rods were milled with deep central channels to reduce weight. While somewhat low powered in terms of units of power per litre, its power-to-weight ratio was an outstanding 1 hp (0.75 kW) per kg.
The following year, 1909, the inventor Roger Ravaud fitted one to his Aéroscaphe, a combination hydrofoil/aircraft, which he entered in the motor boat and aviation contests at Monaco. Henry Farman's use of the Gnome at the famous Rheims aircraft meet that year brought it to prominence, when he won the Grand Prix for the greatest non-stop distance flown—180 kilometres (110 mi)—and also set a world record for endurance flight. The very first successful seaplane flight, of Henri Fabre's Le Canard , was powered by a Gnome Omega on March 28, 1910, near Marseille.
Production of Gnome rotaries increased rapidly, with some 4,000 being produced before World War I, and Gnome also produced a two-row version (the 100 h.p. Double Omega), the larger 80 hp Gnome Lambda and the 160 hp two-row Double Lambda. By the standards of other engines of the period, the Gnome was considered not particularly temperamental, and was credited as the first engine able to run for ten hours between overhauls. [14]
In 1913 the Seguin brothers introduced the new Monosoupape ("single valve") series, which replaced inlet valves in the pistons by using a single valve in each cylinder head, which doubled as inlet and exhaust valve. The engine speed was controlled by varying the opening time and extent of the exhaust valves using levers acting on the valve tappet rollers, a system later abandoned due to valves burning. The weight of the Monosoupape was slightly less than the earlier two-valve engines, and it used less lubricating oil. The 100 hp Monosoupape was built with 9 cylinders, and developed its rated power at 1,200 rpm. [15] The later 160 hp nine-cylinder Gnome 9N rotary engine used the Monosoupape valve design while adding the safety factor of a dual ignition system, and was the last known rotary engine design to use such a cylinder head valving format. The 9N also featured an unusual ignition setup that allowed output values of one-half, one-quarter and one-eighth power levels to be achieved through use of the coupe-switch and a special five-position rotary switch that selected which of the trio of alternate power levels would be selected when the coupe-switch was depressed, allowing it to cut out all spark voltage to all nine cylinders, at evenly spaced intervals to achieve the multiple levels of power reduction. [16] The airworthy reproduction Fokker D.VIII parasol monoplane fighter at Old Rhinebeck Aerodrome, uniquely powered with a Gnome 9N, often demonstrates the use of its Gnome 9N's four-level output capability in both ground runs [17] and in flight.
Rotary engines produced by the Clerget and Le Rhône companies used conventional pushrod-operated valves in the cylinder head, but used the same principle of drawing the fuel mixture through the crankshaft, with the Le Rhônes having prominent copper intake tubes running from the crankcase to the top of each cylinder to admit the intake charge.
The 80 hp (60 kW) seven-cylinder Gnome was the standard at the outbreak of World War I, as the Gnome Lambda, and it quickly found itself being used in a large number of aircraft designs. It was so good that it was licensed by a number of companies, including the German Motorenfabrik Oberursel firm who designed the original Gnom engine. Oberursel was later purchased by Fokker, whose 80 hp Gnome Lambda copy was known as the Oberursel U.0. It was not at all uncommon for French Gnôme Lambdas, as used in the earliest examples of the Bristol Scout biplane, to meet German versions, powering Fokker E.I Eindeckers in combat, from the latter half of 1915 on.
The only attempts to produce twin-row rotary engines in any volume were undertaken by Gnome, with their Double Lambda fourteen-cylinder 160 hp design, and with the German Oberursel firm's early World War I clone of the Double Lambda design, the U.III of the same power rating. While an example of the Double Lambda went on to power one of the Deperdussin Monocoque racing aircraft to a world-record speed of nearly 204 km/h (126 mph) in September 1913, the Oberursel U.III is only known to have been fitted into a few German production military aircraft, the Fokker E.IV fighter monoplane and Fokker D.III fighter biplane, both of whose failures to become successful combat types were partially due to the poor quality of the German powerplant, which was prone to wearing out after only a few hours of combat flight.
The favourable power-to-weight ratio of the rotaries was their greatest advantage. While larger, heavier aircraft relied almost exclusively on conventional in-line engines, many fighter aircraft designers preferred rotaries right up to the end of the war.
Rotaries had a number of disadvantages, notably very high fuel consumption, partially because the engine was typically run at full throttle, and also because the valve timing was often less than ideal. Oil consumption was also very high. Due to primitive carburetion and absence of a true sump, the lubricating oil was added to the fuel/air mixture. This made engine fumes heavy with smoke from partially burnt oil. Castor oil was the lubricant of choice, as its lubrication properties were unaffected by the presence of the fuel, and its gum-forming tendency was irrelevant in a total-loss lubrication system. An unfortunate side-effect was that World War I pilots inhaled and swallowed a considerable amount of the oil during flight, leading to persistent diarrhoea. [18] Flying clothing worn by rotary engine pilots was routinely soaked with oil.
The rotating mass of the engine also made it, in effect, a large gyroscope. During level flight the effect was not especially apparent, but when turning the gyroscopic precession became noticeable. Due to the direction of the engine's rotation, left turns required effort and happened relatively slowly, combined with a tendency to nose up, while right turns were almost instantaneous, with a tendency for the nose to drop. [19] In some aircraft, this could be advantageous in situations such as dogfights. The Sopwith Camel suffered to such an extent that it required left rudder for both left and right turns, and could be extremely hazardous if the pilot applied full power at the top of a loop at low airspeeds. Trainee Camel pilots were warned to attempt their first hard right turns only at altitudes above 1,000 ft (300 m). [20] The Camel's most famous German foe, the Fokker Dr.I triplane, also used a rotary engine, usually the Oberursel Ur.II clone of the French-built Le Rhone 9J 110 hp powerplant.
Even before the First World War, attempts were made to overcome the inertia problem of rotary engines. As early as 1906 Charles Benjamin Redrup had demonstrated to the Royal Flying Corps at Hendon a 'Reactionless' engine in which the crankshaft rotated in one direction and the cylinder block in the opposite direction, each one driving a propeller. A later development of this was the 1914 reactionless 'Hart' engine designed by Redrup in which there was only one propeller connected to the crankshaft, but it rotated in the opposite direction to the cylinder block, thereby largely cancelling out negative effects. This proved too complicated for reliable operation and Redrup changed the design to a static radial engine, which was later tried in the experimental Vickers F.B.12b and F.B.16 aircraft, [21] unfortunately without success.
As the war progressed, aircraft designers demanded ever-increasing amounts of power. Inline engines were able to meet this demand by improving their upper rev limits, which meant more power. Improvements in valve timing, ignition systems, and lightweight materials made these higher revs possible, and by the end of the war the average engine had increased from 1,200 rpm to 2,000 rpm. The rotary was not able to do the same due to the drag of the rotating cylinders through the air. For instance, if an early-war model of 1,200 rpm increased its revs to only 1,400, the drag on the cylinders increased 36%, as air drag increases with the square of velocity. At lower rpm, drag could simply be ignored, but as the rev count rose, the rotary was putting more and more power into spinning the engine, with less remaining to provide useful thrust through the propeller.
One clever attempt to rescue the design, in a similar manner to Redrup's British "reactionless" engine concept, was made by Siemens. The crankcase (with the propeller still fastened directly to the front of it) and cylinders spun counterclockwise at 900 rpm, as seen externally from a "nose on" viewpoint, while the crankshaft (which unlike other designs, never "emerged" from the crankcase) and other internal parts spun clockwise at the same speed, so the set was effectively running at 1800 rpm. This was achieved by the use of bevel gearing at the rear of the crankcase, resulting in the eleven-cylindered Siemens-Halske Sh.III, with less drag and less net torque. [22] : 4–5 Used on several late war types, notably the Siemens-Schuckert D.IV fighter, the new engine's low running speed, coupled with large, coarse pitched propellers that sometimes had four blades (as the SSW D.IV used), gave types powered by it outstanding rates of climb, with some examples of the late production Sh.IIIa powerplant even said to be delivering as much as 240 hp. [22] : 12
One new rotary powered aircraft, Fokker's own D.VIII, was designed at least in part to provide some use for the Oberursel factory's backlog of otherwise redundant 110 hp (82 kW) Ur.II engines, themselves clones of the Le Rhône 9J rotary.
Because of the Allied blockade of shipping, the Germans were increasingly unable to obtain the castor oil necessary to properly lubricate their rotary engines. Substitutes were never entirely satisfactory - causing increased running temperatures and reduced engine life. [23] [24] [25]
By the time the war ended, the rotary engine had become obsolete, and it disappeared from use quite quickly. The British Royal Air Force probably used rotary engines for longer than most other operators. The RAF's standard post-war fighter, the Sopwith Snipe, used the Bentley BR2 rotary as the most powerful (at some 230 hp (170 kW)) rotary engine ever built by the Allies of World War I. The standard RAF training aircraft of the early post-war years, the 1914-origin Avro 504K, had a universal mounting to allow the use of several different types of low powered rotary, of which there was a large surplus supply. Similarly, the Swedish FVM Ö1 Tummelisa advanced training aircraft, fitted with a Le-Rhone-Thulin 90 hp (67 kW) rotary engine, served until the mid thirties.
Designers had to balance the cheapness of war-surplus engines against their poor fuel efficiency and the operating expense of their total-loss lubrication system, and by the mid-1920s, rotaries had been more or less completely displaced even in British service, largely by the new generation of air-cooled "stationary" radials such as the Armstrong Siddeley Jaguar and Bristol Jupiter.
Experiments with the concept of the rotary engine continued.
The first version of the 1921 Michel engine, an unusual opposed-piston cam engine, used the principle of a rotary engine, in that its "cylinder block" rotated. This was soon replaced by a version with the same cylinders and cam, but with stationary cylinders and the cam track rotating in lieu of a crankshaft. A later version abandoned the cam altogether and used three coupled crankshafts.
By 1930 the Soviet helicopter pioneers, Boris N. Yuriev and Alexei M. Cheremukhin, both employed by Tsentralniy Aerogidrodinamicheskiy Institut (TsAGI, the Central Aerohydrodynamic Institute), constructed one of the first practical single-lift rotor machines with their TsAGI 1-EA single rotor helicopter, powered by two Soviet-designed and built M-2 rotary engines, themselves up-rated copies of the Gnome Monosoupape rotary engine of World War I. The TsAGI 1-EA set an unofficial altitude record of 605 meters (1,985 ft) with Cheremukhin piloting it on 14 August 1932 on the power of its twinned M-2 rotary engines. [26]
Although rotary engines were mostly used in aircraft, a few cars and motorcycles were built with rotary engines. Perhaps the first was the Millet motorcycle of 1892. A famous motorcycle, winning many races, was the Megola, which had a rotary engine inside the front wheel. Another motorcycle with a rotary engine was Charles Redrup's 1912 Redrup Radial, which was a three-cylinder 303 cc rotary engine fitted to a number of motorcycles by Redrup.
In 1904 the Barry engine, also designed by Redrup, was built in Wales: a rotating 2-cylinder boxer engine weighing 6.5 kg [3] was mounted inside a motorcycle frame.
The early-1920s German Megola motorcycle used a five-cylinder rotary engine within its front wheel design.
In the 1940s Cyril Pullin developed the Powerwheel, a wheel with a rotating one-cylinder engine, clutch and drum brake inside the hub, but it never entered production.
Besides the configuration of cylinders moving around a fixed crankshaft, several different engine designs are also called rotary engines. The most notable pistonless rotary engine, the Wankel rotary engine has been used by NSU in the Ro80 car, by Mazda in a variety of cars such as the RX-series, and in some experimental aviation applications.
In the late 1970s a concept engine called the Bricklin-Turner Rotary Vee was tested. [27] [28] The Rotary Vee is similar in configuration to the elbow steam engine. Piston pairs connect as solid V-shaped members, with each end floating in a pair of rotating cylinders clusters. The rotating cylinder cluster pairs are set with their axes at a wide V angle. The pistons in each cylinder cluster move parallel to each other instead of a radial direction, This engine design has not gone into production. The Rotary Vee was intended to power the Bricklin SV-1.
Le 6 juin 1905, Louis et Laurent Seguin fondent la société des moteurs Gnome à Gennevilliers
In order to keep the engine running smoothly on reduced power settings, it was necessary for the selector switch to cut out all cylinders at evenly spaced intervals. It was also beneficial to have all cylinders firing periodically to keep them warm and to prevent the spark plugs from fouling with oil. The selector switch has five positions, zero (0) for off and four running positions, one through four (1-4) (see Photo 5). The Gnôme 9N had two magnetos (and two spark plugs per cylinder) and the selector switch was wired to the right magneto only, so it was necessary for the pilot to turn off the left magneto if he wanted to change the speed of the engine.
A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston in one revolution of the crankshaft. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.
The radial engine is a reciprocating type internal combustion engine configuration in which the cylinders "radiate" outward from a central crankcase like the spokes of a wheel. It resembles a stylized star when viewed from the front, and is called a "star engine" in some other languages.
An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Aircraft using power components are referred to as powered flight. Most aircraft engines are either piston engines or gas turbines, although a few have been rocket powered and in recent years many small UAVs have used electric motors.
The Curtiss OX-5 was an early V-8 American liquid-cooled aircraft engine built by Curtiss. It was the first American-designed aircraft engine to enter mass production, although it was considered obsolete when it did so in 1917. It nevertheless found widespread use on a number of aircraft, perhaps the most famous being the JN-4 "Jenny". Some 12,600 units were built through early 1919. The wide availability of the engine in the surplus market made it common until the 1930s, although it was considered unreliable for most of its service life.
The Monosoupape, was a rotary engine design first introduced in 1913 by Gnome Engine Company. It used a clever arrangement of internal transfer ports and a single pushrod-operated exhaust valve to replace the many moving parts found on more conventional rotary engines, and made the Monosoupape engines some of the most reliable of the era. British aircraft designer Thomas Sopwith described the Monosoupape as "one of the greatest single advances in aviation".
Gnome et Rhône was a major French aircraft engine manufacturer. Between 1914 and 1918 they produced 25,000 of their 9-cylinder Delta and Le Rhône 110 hp (81 kW) rotary designs, while another 75,000 were produced by various licensees. These engines powered the majority of aircraft in the first half of the war, both Allied designs as well as German examples produced by Motorenfabrik Oberursel.
Le Rhône was the name given to a series of rotary aircraft engines built between 1910 and 1920. Le Rhône series engines were originally sold by the Société des Moteurs Le Rhône and, following a 1914 corporate buyout, by its successor company, Gnome et Rhône. During World War I, more than 22,000 nine cylinder Le Rhône engines were built, with the type far outselling Gnome et Rhône's other main wartime engine series, the Gnome Monosoupape.
The Le Rhône 9J is a nine-cylinder rotary aircraft engine produced in France by Gnome et Rhône. Also known as the Le Rhône 110 hp in a reference to its nominal power rating, the engine was fitted to a number of military aircraft types of the First World War. Le Rhône 9J engines were produced under license in Great Britain by W.H. Allen Son & Company of Bedford, and in Germany by Motorenfabrik Oberursel where it was sold as the Oberursel Ur.II.
The Anzani 10 was a 1913 10-cylinder air-cooled radial aircraft engine. It powered several experimental aircraft and also the later production versions of the Caudron G.3 reconnaissance aircraft, the Caudron G.4 bomber/trainer and the first production Cessna, the Model AA.
Alessandro Anzani developed the first two-row radial from his earlier 3- cylinder Y engine by merging two onto the same crankshaft with a common crankweb.
The 1913 20-cylinder Anzani air-cooled radial engine was the first four row radial and one of the most powerful engines of its period, though few were used.
The Green D.4 was a four-cylinder watercooled inline piston engine produced by the Green Engine Co in the UK in 1909. It produced about 60 hp (45 kW) and played an important role in the development of British aviation before World War I.
E.N.V. was an early manufacturer of aircraft engines, originally called the London and Parisian Motor Company, their first model appearing in 1908. E.N.V. engines were used by several pioneer aircraft builders and were produced in both France and the UK until about 1914. They subsequently specialised in camshafts and bevel gear manufacture until 1968 when the name was lost.
The Gnome 9 Delta was a French designed, nine-cylinder, air-cooled rotary aero engine that was produced under license in Britain. Powering several World War I era aircraft types it produced 100 hp (75 kW) from its capacity of 16 litres (980 cu in).
The Lorraine 12H Pétrel was a French V-12 supercharged, geared piston aeroengine initially rated at 370 kW (500 hp), but later developed to give 640 kW (860 hp). It powered a variety of mostly French aircraft in the mid-1930s, several on an experimental basis.
The SNECMA 14R was a 14-cylinder two-row air-cooled radial engine developed in France just prior to the start of World War II from the Gnome-Rhône 14N. The 14N radial engine was itself an improved version of the popular pre-war Gnome-Rhône 14K Mistral Major series; designed and manufactured by Gnome et Rhône, a major French aircraft engine manufacturer whose origins pre-date the First World War.
Gyro Motor Company was an American aircraft engine manufacturer.
A total-loss oiling system is an engine lubrication system whereby oil is introduced into the engine and then either burned or ejected overboard. Now rare in four-stroke engines, total loss oiling is still used in many two-stroke engines.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
The De Dion-Bouton 130 hp aircraft engine, also referred to as De Dion-Bouton 12B, was a twelve-cylinder, air cooled vee aircraft engine that has been built by De Dion-Bouton.