Heron cylinder head

Last updated

A Heron cylinder head, or simply Heron head, is a design for the combustion chambers of the cylinder head on an internal combustion piston engine, named for engine designer S.D.Heron. The head is machined flat, with recesses only for inlet and exhaust valves, spark plugs, injectors and so on. The combustion chamber itself is contained within a dished depression in the top of the piston. The Heron head is suitable for petrol and diesel engines, for ohv and ohc valve-gear, and for small and large engine displacement capacities.

Contents

While a flat cylinder head could be combined with simple flat-top pistons, that option ignores the reasons for having a depression in the top of each piston, namely: (i) it provides a compact space for combustion to begin, allowing an optimal flame front; and (ii) it creates significant "squish" as the piston reaches TDC. This causes turbulence, which is desirable because it promotes more extensive mixing of the fuel/air mixture: cf: cf1, cf2, cf3. Having no space available at the top of piston travel to maintain compression ratio would also mean that the air-fuel mixture would be compressed to zero volume (or close), which is far too high a compression ratio for any internal combustion engine to run on (due to detonation before the piston even reached top dead center) unless the stroke was carefully designed to leave a small gap between the top of the cylinder and the head when the piston is at TDC; in a normal engine the size of the combustion chamber dictates the compression ratio of the engine (i.e. the volume of the cylinder is compressed into the space of the chamber at TDC; a flat piston and flat head would leave no space for the air-fuel mixture, unless designed so the piston doesn't actually reach the top of the cylinder bore)

Pros and cons

Applications

Related Research Articles

<span class="mw-page-title-main">Compression ratio</span> Ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values.

<span class="mw-page-title-main">Reciprocating engine</span> Engine utilising one or more reciprocating pistons

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the Stirling engine for niche applications. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust valve.

In spark ignition internal combustion engines, knocking occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel-air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. The shock wave creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential to completely destructive.

<span class="mw-page-title-main">Hemispherical combustion chamber</span>

A hemispherical combustion chamber is a type of combustion chamber in a reciprocating internal combustion engine with a domed cylinder head notionally in the approximate shape of a hemisphere. An engine featuring this type of hemispherical chamber is known as a hemi engine.

A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.

<span class="mw-page-title-main">Ford 335 engine</span> Motor vehicle engine

The Ford 335 engine family was a group of engines built by the Ford Motor Company between 1969 and 1982. The "335" designation reflected Ford management's decision to produce an engine of that size with room for expansion during its development. This engine family began production in late 1969 with a 351 cu in (5.8 L) engine, commonly called the 351C. It later expanded to include a 400 cu in (6.6 L) engine which used a taller version of the engine block, commonly referred to as a tall deck engine block, a 351 cu in (5.8 L) tall deck variant, called the 351M, and a 302 cu in (4.9 L) engine which was exclusive to Australia.

Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

In automotive engineering, an inlet manifold or intake manifold is the part of an engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

<span class="mw-page-title-main">Flathead engine</span> A type of four-stroke engine

A flathead engine, also known as a sidevalve engine or valve-in-block engine is an internal combustion engine with its poppet valves contained within the engine block, instead of in the cylinder head, as in an overhead valve engine.

Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase fuel efficiency while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available vehicle that uses a variable compression ratio engine.

<span class="mw-page-title-main">Ignition timing</span>

In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

The term six-stroke engine has been applied to a number of alternative internal combustion engine designs that attempt to improve on traditional two-stroke and four-stroke engines. Claimed advantages may include increased fuel efficiency, reduced mechanical complexity, and/or reduced emissions. These engines can be divided into two groups based on the number of pistons that contribute to the six strokes.

<span class="mw-page-title-main">Squish (piston engine)</span>

Squish is an effect in internal combustion engines which creates sudden turbulence of the air-fuel mixture as the piston approaches top dead centre (TDC).

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. This replaced the external combustion engine for applications where the weight or size of an engine were more important.

References

  1. "Jaguar XKE Series 3 V-12". Howstuffworks.com. 5 September 2007. Retrieved 20 May 2019.
  2. "Puma Race Engines Technical Guide - Tuning 2 - Other factors to consider in determining an engine's power potential". Archived from the original on 2011-09-18. Retrieved 2011-09-06.
  3. "Out of the Rut". Archived from the original on 2012-01-20. Retrieved 2011-09-06.
  4. "4x4 Mart - Buy & Sell Cars, Trade, Advertise Free, News & Tests, Land Rover, Range Rover, 4x4 for Sale, Discovery, 4x4 clubs, Automotive Title". Archived from the original on 2012-04-02. Retrieved 2011-09-07.