Volvo Redblock Engine

Last updated

Volvo Redblock Engine
Volvo B21 M46.jpg
B21 engine
Overview
Manufacturer Volvo Cars
Production19741998
Layout
Configuration Inline-four
Displacement 1.8–2.3 L (1,784–2,316 cc)
Cylinder bore 88.9 mm (3.50 in)
92 mm (3.62 in)
96 mm (3.78 in)
Piston stroke 71.85 mm (2.83 in)
80 mm (3.15 in)
86 mm (3.39 in)
Block material Cast iron
Head material Aluminium
Valvetrain
Compression ratio 7.5:1, 8.7:1, 9.3:1, 9.5:1, 9.8:1, 10.0:1, 10.5:1, 10.7:1
Combustion
Turbocharger Garrett T3 with intercooler

Mitsubishi TD04H-13C with intercooler

(Select models)
Fuel systemPierburg, SU, Solex-Cisac or Zenith-Stromberg carburettors
Electronic fuel injection
Mechanical fuel injection
Management Bosch K-Jetronic, LH Jetronic, LE Jetronic or Motronic
Fuel type Gasoline
Oil system Wet sump
Cooling system Water cooling
Output
Power output 90–200 hp (67–149 kW)
Torque output 157–290 N⋅m (116–214 lb⋅ft)
Emissions
Emissions control technology EGR, Pulse air system, Catalytic converter, O2 sensor
Chronology
Predecessor Volvo B20
Successor Volvo Modular engine

The Volvo B21 is a slanted straight-four engine first used in the Volvo 200 series, meant to replace the B20. The B21 and all derived engines are often referred to as red block engines for the red paint applied to the block. The primary differences when compared to the B20 was the switch to a SOHC in place of the older pushrod configuration, and an aluminum crossflow cylinder head versus the iron head of the B20.

Contents

History

Initially the overhead camshaft versions were offered as optional equipment on the 240, becoming standard in all markets by the 1976 model year. The overhead camshaft motors were available in displacements of 2.0 (B19 and B200), 2.1 (B21), and eventually 2.3 (B23 and B230) litres. The B21 featured an 80 mm (3.15 in) stroke, and 92 mm (3.62 in) bore. In the US, the B21's power output ranged anywhere between 98 hp (73 kW) and 107 hp (80 kW), based on variations in the compression ratio and was typically supplied with a B or M camshaft.
The engines are tilted approximately 15 degrees to right (exhaust side) to make room for the more complicated injection systems. B19 and B21 blocks can be identified by water plugs on one side of the block. The B23 blocks have them on both sides. The camshaft is driven by a toothed belt that is driven off the front of the crankshaft. The belt turns the intermediate shaft as well, which in turn drives the oil pump, distributor (on 240 engines and BXX 700/900 series engines) and the fuel pump of carburetor models. All single camshaft versions of the engine with the exception of the K series (B200K, B230K) are of 'non-interference' design, meaning that failure of the toothed belt will not result in engine damage.

B21 engine in a 1970s Volvo 240 B2170s.JPG
B21 engine in a 1970s Volvo 240

In 1981 the B21FT (a B21F with a turbo) was introduced with a compression ratio of 7.5:1 mated with a Garrett T3 turbocharger and a T camshaft. Additional turbo variants, not offered in the US market, were the B19ET and the B21ET, based on the B19E and B21E respectively. The turbocharger increased power output to 127 hp (95 kW) for the B21FT, and 155 hp (116 kW) for the B21ET. 6.5 psi (0.45 bar) boost on the B21FT and 9 psi (0.62 bar) boost on the B21ET. Also new for the 1981 model year in Canada (previously introduced in 1979 outside of North America) was the B23, with a displacement of 2.3 litres (80 mm (3.15 in) stroke and 96 mm (3.78 in) bore). Aside from the increased bore size, the engine is identical to the B21. Volvo used a slightly different mold for the turbo engines to cast a boss for the turbo oil return line. Because a turbocharged engine has a higher operating temperature they used sodium filled exhaust valves and a thermostat controlled oil cooler (air/oil model).

In 1983 the B23 was introduced to the United States market as a B23F engine. Also introduced in 1983, the "intercooler boost system" (IBS) was introduced for the B21FT motors. The IBS kit consisted of an intercooler, appropriate ducting, a new fan shroud, new oil cooler lines and mounting brackets, and optionally an automatic transmission kit. IBS raised the output of the B21FT to 157 hp (117 kW), slightly more than the non-intercooled European market B21ET's 155 hp (116 kW). Canada also received the B21FT, along with a detuned B23E in 1983.

Midway through the 1984 model year, the "intercooler boost system" became standard on North American 240 Turbos. Additionally a bigger clutch and a stepped flywheel were included. Combined with changes to the fuel system in 1984 that boosted the B21FT's non-intercooled horsepower to 131 hp (98 kW), the factory intercooled 1984.5 model horsepower rating increased to 162 hp (121 kW).

The B19 and B200 powered the Volvo 360. Volvo 360 detail.jpg
The B19 and B200 powered the Volvo 360.

In 1985 a revised, "low friction" design was introduced, dubbed the B200 and B230 (depending on displacement). Several components had design changes, longer rods (152 mm (6.0 in) c-c, 7 mm (0.28 in) longer), pistons with a lower compression height, lower friction bearings (smaller in size), a crankshaft with 8 counterweights (instead of 4 on the older Bxx engines) and a heavy harmonic balancer (aka damper) in the crank pulley. 1989 saw an upgrade to the crankshaft, with a relocated axial thrust bearing back to the number 5 journal, bigger main bearings, rods were enlarged to 13 mm (0.51 in) from 9 mm (0.35 in) in 1990. Also introduced in 1989 were 16 valve, twin-cam variants of the B200 and B230, dubbed the B204 and B234 respectively. The B204 was also available in turbo form in some markets (such as Italy) where large displacement motors were taxed heavily. It came in two versions: The B204GT turbo motor operates with a lead resistant lambda probe and generates approximately 200 hp (149 kW). The B204FT has a catalytic converter and generates 185 hp (138 kW). Both were the first redblocks standard equipped with oil squirters for piston cooling. Crankshaft, connecting rods and pistons were all forged. Exhaust valves were sodium filled for cooler operation. It has smaller valves and stiffer valve springs than n/a 16V. Crank torque is 290 N⋅m (214 lb⋅ft) at 2950 rpm for the GT, and 280 N⋅m (207 lb⋅ft) for the FT. Other differences from the normal 16V redblock engine are that it uses a remote mounted oil filter (Away from block on exhaust side engine mount) and a windage tray.

For the B230 engines 1993, piston cooling, oil squirting jets were added to help alleviate piston slap problems on the turbo motors. Another modification was to go from a square toothed timing belt set up to a round toothed timing belt setup which made for quieter belt running.

Although availability of the redblock was phased out in 1995 in North America, production continued in Europe until 1998 when the 940 model was discontinued.

Nomenclature

The B21, and related red block motors, were named using the following convention: B##X or B##VX. Where B stands for "bensin" (gasoline), ## stands for the displacement in decilitres, and X is an appropriate suffix. On the later low-friction motors, V denotes SOHC configuration (0) or DOHC configuration (4, for 4 valves per cylinder).

i.e. B230 (SOHC, 2.3 litres), B234 (2.3 litres, DOHC * 4 valves per cylinder * 4 cylinders = 16 valves)

The following suffixes were commonly used by Volvo:

(boost level was lowered because of taxes although only in some countries)

Special versions

B17

Special version for certain European export markets (e.g. Greece, Israel) with shorter stroke than the B19, 88.9 mm × 71.85 mm (3.50 in × 2.83 in) bore and stroke for 1.8 L (1,784 cc) displacement.

B19 Turbo

The 2.0 L (1,986 cc)100 kW (136 PS) B19ET was sold in certain markets where engines of over 2litre displacement were heavily taxed, such as Italy. The engine has the same stroke as all other redblocks, the smaller displacement is the result of a smaller bore at 88.9 mm × 80 mm (3.50 in × 3.15 in). It is a very robust engine with forged pistons (made by Kolbenschmidt).[ citation needed ] The B19 later evolved into the B200 low friction engine.

B23 Turbo

The B23ET and B23FT motors were offered for two years only in the 1983 and 1984 Volvo 700 series. Both the B23ET and B23FT are somewhat unusual in the 700 series, as they were the only turbo motors offered in the 700 series with a block mounted distributor, forged pistons and a forged crankshaft. The B23ET was the only redblock known to be equipped with a small coolant passage version of the higher flowing 405 cylinder head, the FT had to make do with normal 398 head. As these motors predate the low-friction B200 and B230 turbos and are equipped with forged pistons and crank, they are often considered one of the most robust Volvo turbo motors.

16 Valve Variants

B234F engine B234F.jpg
B234F engine

Introduced in 1988 for the 740 GLE (and later used in the 940/960), The 16-Valve Redblock motors were offered in both a 2.0litre Turbo (B204FT/GT) and a 2.3litre 155 PS (114 kW) Naturally aspirated version (B234F). The head was designed for Volvo by either Cosworth or Porsche.[ citation needed ] In addition to the 16 Valve head, these motors were equipped with twin counter rotating external balance shafts and the engine block itself differs from the 8V redblock. The block differed from the standard B230 in that the auxiliary shaft (used to drive the oil pump and distributor on models that had block mounted distributors) was replaced with an external oil pump. The 16-Valve head was itself a completely new design for Volvo: The head was of a multi-piece design featuring a separate cam carrier and lower section. The later "white block" motors can trace their head design back to the two-piece setup found in the B204 and B234. The 2.0 litre turbo variant was introduced for European markets with tax structures tied to engine displacement such as Italy. Unique to the B204 turbo was an exhaust gas pyrometer which was used to detect excessively high exhaust temperatures. When excessively high exhaust temperatures were detected, the fuel injection computer would enrich the mixture. It has a forged crankshaft, cast pistons, and 13 mm (0.51 in) connecting rods.

Although a powerful engine for its time, the 16 Valve engine can experience some problems that can be solved easily. One of the few problems is oil pump gear problems leading to broken timing belts. The oil pump gear itself can fail around the mounting flange, or, more often, the weak 8.8 (grade 5) grade bolt holding the gear can break. It is strongly recommended to use a 10.9 (grade 8) grade bolt when replacing the oil pump gear. Another cause for timing belt failure is improperly adjusting the timing belt on engines with a manual tensioner (1989 to very early 1990 models only) or improperly adjusting the balance shaft belt. Because this is an interference engine, damage will occur if the timing belt fails. Another common occurrence is that the balance shaft's oil seals are prone to leak on older engines. New replacement sealings tend to start leaking again due to 'worn in irregularities' on the shaft itself. Many people have removed the balance shaft belt or the balance shaft assemblies altogether to prevent belt failure and/or leakage. The balance shafts are only there to lessen high rpm second order vibrations, and removing them will only affect high rpm vibrations. Once all the common problems are solved, the 16 Valve engines are just as reliable as their SOHC counterparts.

The recommended timing belt interval for these engines is every 50,000 mi (80,000 km), or earlier if the engine is modified. It is also recommended to replace the crank and camshaft seals at every interval and to thoroughly inspect the tensioner and idler pulleys for wear.

Volvo Penta

Volvo Penta sold the OHC redblocks as marine engines as well, just like the older OHV engines. Depending on the model the displacement was 2.1 L (2,127 cc) (as B21), 2.3 L (2,316 cc) (same as B23/B230 automotive) or 2.5 L (2,490 cc). The engines with 2.5 L (2,490 cc) displacement, identified as the Volvo Penta AQ151 (8 valve) and AQ171 (dohc 16 valve) models, got a forged crankshaft with a longer stroke of 86 mm (3.39 in) together with pistons with a 3 mm (0.12 in) lower compression height. The 2.5 L (2,490 cc) blocks still had B230 cast in the block. Penta used both the 8 valve and 16 valve cylinder heads. Both the 8V and 16V variants used the same engine block series, the 16V versions didn't use the different block like the automotive B2x4 with balance shafts.

See also

Related Research Articles

<span class="mw-page-title-main">Ford CVH engine</span> Motor vehicle engine

The Ford CVH engine is a straight-four automobile engine produced by the Ford Motor Company. The engine's name is an acronym for either Compound Valve-angle Hemispherical or Canted Valve Hemispherical, where "Hemispherical" describes the shape of the combustion chamber. The CVH was introduced in 1980 in the third generation European Escort and in 1981 in the first generation North American Escort. Engines for North America were built in Ford's Dearborn Engine plant, while engines for Europe and the UK were built in Ford's then-new Bridgend Engine plant in Wales.

The GM Ecotec engine, also known by its codename L850, is a family of all-aluminium inline-four engines, displacing between 1.4 and 2.5 litres. While these engines were based on the GM Family II engine, the architecture was substantially re-engineered for the new Ecotec application produced since 2000. This engine family replaced the GM Family II engine, the GM 122 engine, the Saab H engine, and the Quad 4 engine. It is manufactured in multiple locations, to include Spring Hill Manufacturing, in Spring Hill, Tennessee while the engine block and cylinder heads are cast at Saginaw Metal Casting Operations in Saginaw, Michigan.

<span class="mw-page-title-main">Chrysler 1.8, 2.0 & 2.4 engine</span> Motor vehicle engine

The Chrysler 1.8, 2.0, and 2.4 are inline-4 engines designed originally for the Dodge and Plymouth Neon compact car. These engines were loosely based on their predecessors, the Chrysler 2.2 & 2.5 engine, sharing the same 87.5 mm (3.44 in) bore. The engine was developed by Chrysler with input from the Chrysler-Lamborghini team that developed the Chrysler/Lamborghini Formula 1 V12 engine in the early 1990s.

A W8 engine is an eight-cylinder piston engine with four banks of two cylinders each, arranged in a W configuration.

<span class="mw-page-title-main">Ford Essex V6 engine (UK)</span> Motor vehicle engine

The Ford Essex V6 engine is a 60° V6 engine built between 1966 and 1988 by the Ford Motor Company in the United Kingdom and until 2000 in South Africa although mostly in the Ford engine plant of Dagenham, Essex, which gave the engine its name. It is closely related to the Ford Essex V4 engine produced in displacements of 1.7 L and 2.0 L. Both engines share many parts since the Essex V6 was directly derived from the Essex V4; the 2.0 L Essex V4 and the 3.0 L Essex V6 in fact have exactly the same bore and stroke and share various components.

<span class="mw-page-title-main">Ford Cologne V6 engine</span> Motor vehicle engine

The original Ford Cologne V6 is a series of 60° cast iron block V6 engines produced continuously by the Ford Motor Company in Cologne, Germany, since 1965. Along with the British Ford Essex V6 engine and the U.S. Buick V6 and GMC Truck V6, these were among the first mass-produced V6 engines in the world.

The Mazda B-series engine - not to be confused with the Mazda B-Series truck - is a small-sized, iron-block, inline four-cylinder with belt-driven SOHC and DOHC valvetrain ranging in displacement from 1.1 to 1.8 litres. It was used from front-wheel drive economy applications to the turbocharged full-time 4WD 323 GTX and rear-wheel drive Miata as well as numerous other models. The Mazda B-series is a "non-interference" design, meaning that breakage of its timing belt does not result in damage to valves or pistons, because the opening of the valves, the depth of the combustion chamber and the shaping of the piston crown allow sufficient clearance for the open valves in any possible piston position.

<span class="mw-page-title-main">Nissan RB engine</span> Motor vehicle engine

The RB engine is an oversquare 2.0–3.0 L straight-6 four-stroke gasoline engine from Nissan, originally produced from 1985 to 2004. The RB followed the 1983 VG-series V6 engines to offer a full, modern range in both straight or V layouts.

<span class="mw-page-title-main">General Motors 54° V6 engine</span> Motor vehicle engine

General Motors' Opel subsidiary in Europe designed a compact V6 engine with an unusual 54° vee angle. It was an iron block/aluminum head DOHC design with 4 valves per cylinder. All 54° engines were assembled at Ellesmere Port in England.

<span class="mw-page-title-main">Toyota JZ engine</span> Motor vehicle engine

The Toyota JZ engine family is a series of inline-6 automobile engines produced by Toyota Motor Corporation. As a replacement for the M-series inline-6 engines, the JZ engines were 24-valve DOHC engines in 2.5- and 3.0-litre versions.

<span class="mw-page-title-main">Honda C engine</span> Motor vehicle engine

Honda's first production V6 was the C series; it was produced in displacements from 2.0 to 3.5 liters. The C engine was produced in various forms for over 20 years (1985–2005), having first been used in the KA series Legend model, and its British sister car the Rover 800-series.

<span class="mw-page-title-main">Lotus 900 series</span> Series of engines developed by Lotus

The Lotus 900 series is a family of internal combustion engines designed and built by Lotus Cars of United Kingdom. Successor to the Lotus-Ford Twin Cam, the 900 was the first complete engine developed by Lotus. The engine was built from 1972 to 1999.

<span class="mw-page-title-main">Honda F engine</span> Motor vehicle engine

The Honda F-Series engine was considered Honda's "big block" SOHC inline four, though lower production DOHC versions of the F-series were built. It features a solid iron or aluminum open deck cast iron sleeved block and aluminum/magnesium cylinder head.

<span class="mw-page-title-main">Toyota S engine</span> Motor vehicle engine

The Toyota S Series engines are a family of straight-4 petrol or CNG engines with displacement from 1.8 L to 2.2 L produced by Toyota Motor Corporation from January 1980 to August 2007. The series has cast iron engine blocks and aluminium cylinder heads.

<span class="mw-page-title-main">Subaru EJ engine</span> Motor vehicle engine

The Subaru EJ engine is a series of four-stroke automotive engines manufactured by Subaru. They were introduced in 1989, intended to succeed the previous Subaru EA engine. The EJ series was the mainstay of Subaru's engine line, with all engines of this series being 16-valve horizontal flat-fours, with configurations available for single, or double-overhead camshaft arrangements. Naturally aspirated and turbocharged versions are available, ranging from 96 to 320 hp. These engines are commonly used in light aircraft, kit cars and engine swaps into air-cooled Volkswagens, and are also popular as a swap into copy wasserboxer engined Volkswagen T3/Vanagon. Primary engineering on the EJ series was done by Masayuki Kodama, Takemasa Yamada and Shuji Sawafuji of Fuji Heavy Industries, Subaru's parent company.

The Family II is a straight-4 piston engine that was originally developed by Opel in the 1970s, debuting in 1979. Available in a wide range of cubic capacities ranging from 1598 to 2405cc, it simultaneously replaced the Opel OHV, Opel CIH and Vauxhall Slant-4 engines, and was GM Europe's core powerplant design for much of the 1980s.

References