Engine configuration

Last updated

The engine configuration describes the fundamental operating principles by which internal combustion engines are categorized.

Contents

Piston engines are often categorized by their cylinder layout, valves and camshafts. Wankel engines are often categorized by the number of rotors present. Gas turbine engines are often categorized into turbojets, turbofans, turboprops and turboshafts.

Piston engines

1919 Napier Lion II aircraft engine with three cylinder banks Napier Lion II 2.jpg
1919 Napier Lion II aircraft engine with three cylinder banks

Piston engines are usually designed with the cylinders in lines parallel to the crankshaft. It is called a straight engine (or 'inline engine') when the cylinders are arranged in a single line.

Where the cylinders are arranged in two or more lines (such as in V engines or flat engines), each line of cylinders is referred to as a 'cylinder bank'. The angle between cylinder banks is called the 'bank angle'. Engines with multiple banks are shorter than straight engines of the same size, and will often have better engine balance characteristics, resulting in reduced engine vibration and potentially higher maximum engine speeds.

Most engines with four or less cylinders use a straight engine layout, and most engines with eight cylinders or more use a V engine layout. However, there are various exceptions to this, such as the straight-eight engines used by various luxury cars from 1919-1954, [1] [2] [3] V4 engines used by some marine outboard motors, V-twin and flat-twin engines used by motorcycles and flat-four engines used by various cars.

Single cylinder bank

1928-1942 Indian Four straight-4 motorcycle engine Indian 4 engine manifold side.jpg
1928-1942 Indian Four straight-4 motorcycle engine

Straight engines (also known as "inline engines") have all cylinders aligned in one row along the crankshaft with no offset. When a straight engine is mounted at an angle, it is sometimes called a "slant engine". Types of straight engines include:

Multiple cylinder banks

V engines

V6 engine IC engine.JPG
V6 engine

V engines (also known as "Vee engines") have the cylinders aligned in two separate planes or 'banks', so that they appear to be in a "V" when viewed along the axis of the crankshaft. Types of V engines include:

VR5 and VR6 engines are very compact and light, having a narrow V angle which allows a single cylinder block and cylinder head. These engines use a single cylinder head so are technically a straight engine with the name "VR" coming from the combination of German words “Verkürzt” and “Reihenmotor” meaning “shortened inline engine”.

Flat engines

Douglas flat-twin motorcycle engine Douglas motorcycle engine, Abergavenny steam rally 2012.jpg
Douglas flat-twin motorcycle engine

Flat engines (also known as "horizontally-opposed" engines) have the cylinders arranged in two banks on either side of a single crankshaft. Boxer engines are a subtype of flat engines where opposing pistons move in and out in tandem.

Types of flat engines include:

W engines

W engines have the cylinders in a configuration in which the cylinder banks resemble the letter W, in the same way those of a V engine resemble the letter V. Types of W engines include:

W engines using twin "VR" engine banks are technically a V8 engine. These engine banks use a single cylinder head so are technically a straight bank with the name "VR" coming from the combination of German words “Verkürzt” and “Reihenmotor” meaning “shortened inline engine”.

Other layouts

Radial engines have cylinders mounted radially around a central crankcase. Rotary engines have a similar configuration, except that the crankshaft is fixed and the cylinders rotate around it. (This is different from the Wankel engine configuration described below.) Radial and rotary engine designs were widely used in early aircraft engines.

U engines consist of two separate straight engines (complete with separate crankshafts) joined by gears or chains. Most U engines have four cylinders (i.e. two straight-two engines combined), such as square four engines and tandem twin engines. Similar to U engines, H engines consist of two separate flat engines joined by gears or chains. H engines have been produced with between 4 and 24 cylinders.

An opposed-piston engine is similar to a flat engine in that pairs of pistons are co-axial but rather than sharing a crankshaft, instead share a single combustion chamber per pair of pistons. The crankshaft configuration varies amongst opposed-engine designs. One layout has a flat/boxer engine at its center and adds an additional opposed-piston to each end so there are two pistons per cylinder on each side.

An X engine is essentially two V engines joined by a common crankshaft. A majority of these were existing V-12 engines converted into an X-24 configuration.

The Swashplate engine with the K-Cycle engine is where pairs of pistons are in an opposed configuration sharing a cylinder and combustion chamber.

A Delta engine has three (or its multiple) cylinders having opposing pistons, aligned in three separate planes or 'banks', so that they appear to be in a Δ when viewed along the axis of the main-shaft. An example of this type of layout is the Napier Deltic.

Wankel (rotary) engines

Wankel engines (sometimes called 'rotary engines') can be classified based on the number of rotors present. Most production Wankel engines have two rotors, however engines with one, three and four rotors have also been produced. [4] [5] Wankel engines can also be classified based on whether they are naturally aspirated or turbocharged.

Most Wankel engines are fueled by petrol, however prototype engines running on diesel and hydrogen have been trialed.

Gas turbine engines

Gas turbine engines— mostly used for aircraft— are usually separated into the following categories:

See also

Related Research Articles

<span class="mw-page-title-main">V6 engine</span> Piston engine with six cylinders in a "V" configuration

A V6 engine is a six-cylinder piston engine where the cylinders and cylinder blocks share a common crankshaft and are arranged in a V configuration.

<span class="mw-page-title-main">Aircraft engine</span> Engine designed for use in powered aircraft

An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Aircraft using power components are referred to as powered flight. Most aircraft engines are either piston engines or gas turbines, although a few have been rocket powered and in recent years many small UAVs have used electric motors.

<span class="mw-page-title-main">Straight engine</span> Cylinder layout for a piston engine

The straight engine is a configuration of multi-cylinder piston engine where all of the cylinders are arranged in a single row, rather than radially or in two or more cylinder banks.

<span class="mw-page-title-main">V engine</span> Internal combustion engine with two banks of cylinders at an angle resembling a V

A V engine, sometimes called a Vee engine, is a common configuration for internal combustion engines. It consists of two cylinder banks—usually with the same number of cylinders in each bank—connected to a common crankshaft. These cylinder banks are arranged at an angle to each other, so that the banks form a "V" shape when viewed from the front of the engine.

<span class="mw-page-title-main">Flat engine</span> Combustion engine using pistons facing to the sides on a common crankshaft

A flat engine is a piston engine where the cylinders are located on either side of a central crankshaft. Flat engines are also known as horizontally opposed engines, however this is distinct from the less common opposed-piston engine design, whereby each cylinder has two pistons sharing a central combustion chamber.

<span class="mw-page-title-main">Flat-four engine</span> Horizontally opposed four-cylinder piston engine

A flat-four engine, also known as a horizontally opposed-four engine or boxer engine, is a four-cylinder piston engine with two banks of cylinders lying on opposite sides of a common crankshaft. The most common type of flat-four engine is the boxer-four engine, each pair of opposed pistons moves inwards and outwards at the same time.

<span class="mw-page-title-main">Straight-twin engine</span> Inline piston engine with two cylinders

A straight-twin engine, also known as an inline-twin, vertical-twin, inline-2, or parallel-twin, is a two-cylinder piston engine whose cylinders are arranged in a line along a common crankshaft.

<span class="mw-page-title-main">Straight-four engine</span> Inline piston engine with four cylinders

A straight-four engine is a four-cylinder piston engine where cylinders are arranged in a line along a common crankshaft.

The straight-five engine is a piston engine with five cylinders mounted in a straight line along the crankshaft.

<span class="mw-page-title-main">U engine</span>

A U engine is a piston engine made up of two separate straight engines placed side-by-side and coupled to a shared output shaft. When viewed from the front, the engine block resembles the letter "U".

<span class="mw-page-title-main">Flat-six engine</span> Horizontally opposed 6-cylinder piston engine

A flat-six engine, also known as a horizontally opposed-six, is a six-cylinder piston engine with three cylinders on each side of a central crankshaft. The most common type of flat-six engine is the boxer-six engine, where each pair of opposed cylinders moves inwards and outwards at the same time. An alternative configuration for flat engines is a 180-degree V engine, where both cylinders move to the right then the left at the same time.

<span class="mw-page-title-main">Balance shaft</span> Weights used to balance otherwise unbalanced engine movement

Balance shafts are used in piston engines to reduce vibration by cancelling out unbalanced dynamic forces. The counter balance shafts have eccentric weights and rotate in opposite direction to each other, which generates a net vertical force.

<span class="mw-page-title-main">Longitudinal engine</span> Internal combustion engine mounted with the crankshaft lengthwise

In automotive engineering, a longitudinal engine is an internal combustion engine in which the crankshaft is oriented along the long axis of the vehicle, from front to back. See also: transverse engine

<span class="mw-page-title-main">Motorcycle engine</span> Engine that powers a motorcycle

A motorcycle engine is an engine that powers a motorcycle. Motorcycle engines are typically two-stroke or four-stroke internal combustion engines, but other engine types, such as Wankels and electric motors, have been used.

Engine balance refers to how the inertial forces produced by moving parts in an internal combustion engine or steam engine are neutralised with counterweights and balance shafts, to prevent unpleasant and potentially damaging vibration. The strongest inertial forces occur at crankshaft speed and balance is mandatory, while forces at twice crankshaft speed can become significant in some cases.

<span class="mw-page-title-main">Crossplane</span> Crankshaft with throws extending in two planes

The crossplane or cross-plane is a crankshaft design for piston engines with a 90° angle between the crank throws. The crossplane crankshaft is the most popular configuration used in V8 road cars.

<span class="mw-page-title-main">Dead centre (engineering)</span> The positions of an engines piston at the top or bottom of its stroke

In a reciprocating engine, the dead centre is the position of a piston in which it is either farthest from, or nearest to, the crankshaft. The former is known as top dead centre (TDC) while the latter is known as bottom dead centre (BDC).

<span class="mw-page-title-main">Inline engine (aeronautics)</span> Reciprocating engine arranged with cylinders in banks aligned with the crankshaft

In aviation, an inline engine is a reciprocating engine with banks of cylinders, one behind another, rather than rows of cylinders, with each bank having any number of cylinders, although more than six is uncommon. The major reciprocating-engine alternative configuration is the radial engine, where the cylinders are placed in a circular or "star" arrangement.

A big bang engine has an unconventional firing order designed so that some of the power strokes occur simultaneously or in close succession. This is achieved by changing the ignition timing, changing or re-timing the camshaft, and sometimes in combination with a change in crankpin angle. The goal is to change the power delivery characteristics of the engine. A regular-firing multi-cylinder engine fires at approximately even intervals, giving a smooth-running engine. Because a big-bang engine has uneven power delivery, it tends to run rougher and generates more vibration than an even-firing engine.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References

  1. Posthumus, Cyril (1977) [1977]. "War and Peace". The story of Veteran & Vintage Cars. John Wood, illustrator (Phoebus 1977 ed.). London: Hamlyn / Phoebus. p. 70. ISBN   0-600-39155-8.
  2. "Engine of the Day: Packard Inline Eight". www.jalopnik.com. Retrieved 15 November 2019.
  3. Hemmings Classic Car. Vol. 6, no. 5. February 2010. p. 39.{{cite magazine}}: Missing or empty |title= (help)
  4. "Technically Interesting: Dr. Wankel's Quad-Rotor Mercedes SL". www.bringatrailer.com. 21 March 2018. Retrieved 31 August 2019.
  5. "How a Four-Rotor Wankel Engine Works". www.roadandtrack.com. 23 November 2016. Retrieved 31 August 2019.