Firing order

Last updated
For this inline-4 engine, 1-3-4-2 could be a valid firing order. Cshaft.gif
For this inline-4 engine, 1-3-4-2 could be a valid firing order.

The firing order of an internal combustion engine is the sequence of ignition for the cylinders.

Contents

In a spark ignition (e.g. gasoline/petrol) engine, the firing order corresponds to the order in which the spark plugs are operated. In a diesel engine, the firing order corresponds to the order in which fuel is injected into each cylinder. Four-stroke engines must also time the valve openings relative to the firing order, as the valves do not open and close on every stroke.

Firing order affects the vibration, sound and evenness of power output from the engine and heavily influences crankshaft design.

Cylinder numbering

Numbering systems for car engines

The numbering system for cylinders is generally based on the cylinder numbers increasing from the front to the rear of an engine (See engine orientation below). [1] However, there are differences between manufacturers in how this is applied; some commonly used systems are as listed below.

Straight engine

In a straight engine the cylinders are numbered from front (#1 cylinder) to rear.

V engine

V8 engine with cylinder numbering based on crankshaft position (instead of following each cylinder bank) V-engine-cylnum-1.png
V8 engine with cylinder numbering based on crankshaft position (instead of following each cylinder bank)

In a V engine the frontmost cylinder is usually #1, however there are two common approaches:

  • Numbering the cylinders in each bank sequentially (e.g. 1-2-3-4 along the left bank and 5-6-7-8 along the right bank). This approach is typically used by V8 engines from Audi, Ford and Porsche. [2]
  • Numbering the cylinders based on their position along the crankshaft (e.g. 1-3-5-7 along the right bank and 2-4-6-8 along the left bank). This approach is typically used by V8 engines from General Motors, [3] [4] and Chrysler.

The selection of whether the #1 cylinder is on the left bank or right bank usually depends on which bank is closer to the front of the crankshaft. However, the Ford Flathead V8 and Pontiac V8 engine actually have the #1 cylinder behind the cylinder from the opposite bank. This was done so that all Ford engines would have cylinder #1 on the right bank and all Pontiac engines would have cylinder #1 on the left bank, to simplify the process of identifying the cylinders.

Radial engine

In a radial engine the cylinders are numbered around the circle, in clockwise direction with the #1 cylinder at the top.

Engine orientation within cars

The simplest situation is a longitudinal engine located at the front of the car, which means the engine's orientation is the same as the car's. This illustrates that the rear of the engine is the end that connects to the transmission, while the front end often has the drive belt for accessories (such as the alternator and water pump). The left bank of the engine is on the left side of the car (when looking from behind the car), and vice versa for the right bank of the engine.

For a transverse engine located at the front of the car, whether the front of the engine is at the left-hand or right-hand side of the car is best determined based on the side of the car where the transmission is located (which corresponds to the rear of the engine). Most transverse engine front-wheel drive models have the front of the engine at the right-hand side of the car (except for many Honda cars). As a consequence, the left bank of a transversely V engine is usually closest to the front of the car.

For cars where the engine is installed 'backwards' (i.e. the transmission is closer to the front of the car than the engine, or under the engine), cylinder #1 is located towards the firewall, the rear of the car. This is the case for the Citroën Traction Avant, Saab 99, Saab 900 and many rear-engine cars.

Numbering systems for ship engines

Contrary to most car engines, a ship's engines are often numbered starting from the end of the engine with the power output. Large diesel truck and locomotive engines, particularly of European manufacture, may also be numbered this way.

Cylinders on V engines often include a letter representing the cylinder bank. For example, a V6 engine could have cylinders A1-A2-A3-B1-B2-B3, with cylinders A1 and B1 located at the power output end of the engine.

Common firing orders

Firing order shown on a Lycoming R-680-13 9-cylinder radial engine Boeing-Stearman PT-13D (9).jpg
Firing order shown on a Lycoming R-680-13 9-cylinder radial engine

Common firing orders are listed below. For V engines and flat engines, the numbering system is L1 for the front cylinder of the left bank, R1 for the front cylinder of the right bank, etc.

In a radial engine, there are always an odd number of cylinders in each bank, as this allows for a constant alternate cylinder firing order: for example, with a single bank of 7 cylinders, the order would be 1-3-5-7-2-4-6. Moreover, unless there is an odd number of cylinders, the ring cam around the nose of the engine would be unable to provide the inlet valve open - exhaust valve open sequence required by the four-stroke cycle.

Firing interval

To minimise vibrations, most engines use an evenly spaced firing interval. This means that the timing of the power stroke is evenly spaced between cylinders. For a four-stroke engine, this requires a firing interval of 720° divided by the number of cylinders, for example a six-cylinder engine would have a firing interval of 120°. [5] On the other hand, a six-cylinder engine with an uneven firing interval could have intervals of 90° and 150°.

Engines with an even firing interval will sound smoother, have less vibration and provide more even pressure pulses in the exhaust gas to the turbocharger. [6] Engines with an uneven firing interval usually have a burble or a throaty, growling engine sound and more vibrations.

The main application of uneven firing intervals is motorcycle engines, such as big-bang firing order engines. Examples of odd-firing engines are most four-stroke V-twin engines, 1961-1977 Buick V6 engine, 1985-present Yamaha VMAX, 1986–present Honda VFR 750/800, 1992-2017 Dodge Viper V10, 2008-present Audi/Lamborghini 5.2 V10 40v FSI, [7] Aston Martin 5.9 V12 1999-2018 and the 2009-2020 Yamaha R1 (inline four engine with a crossplane crankshaft). [8]

See also

Related Research Articles

<span class="mw-page-title-main">Crankshaft</span> Mechanism for converting reciprocating motion to rotation

A crankshaft is a mechanical component used in a piston engine to convert the reciprocating motion into rotational motion. The crankshaft is a rotating shaft containing one or more crankpins, that are driven by the pistons via the connecting rods.

<span class="mw-page-title-main">V6 engine</span> Piston engine with six cylinders in a "V" configuration

A V6 engine is a six-cylinder piston engine where the cylinders share a common crankshaft and are arranged in a V configuration.

<span class="mw-page-title-main">V engine</span> Internal combustion engine with two banks of cylinders at an angle resembling a V

A V engine, sometimes called a Vee engine, is a common configuration for internal combustion engines. It consists of two cylinder banks—usually with the same number of cylinders in each bank—connected to a common crankshaft. These cylinder banks are arranged at an angle to each other, so that the banks form a "V" shape when viewed from the front of the engine.

<span class="mw-page-title-main">V4 engine</span> Piston engine with four cylinders in "V" configuration

A V4 engine is a four-cylinder piston engine where the cylinders share a common crankshaft and are arranged in a V configuration.

The engine configuration describes the fundamental operating principles by which internal combustion engines are categorized.

<span class="mw-page-title-main">Flat-four engine</span> Horizontally opposed four-cylinder piston engine

A flat-four engine, also known as a horizontally opposed-four engine or boxer engine, is a four-cylinder piston engine with two banks of cylinders lying on opposite sides of a common crankshaft. The most common type of flat-four engine is the boxer-four engine, each pair of opposed pistons moves inwards and outwards at the same time.

<span class="mw-page-title-main">Straight-twin engine</span> Inline piston engine with two cylinders

A straight-twin engine, also known as an inline-twin, vertical-twin, or parallel-twin, is a two-cylinder piston engine whose cylinders are arranged in a line along a common crankshaft.

<span class="mw-page-title-main">Straight-eight engine</span> Inline piston engine with eight cylinders

The straight-eight engine or inline-eight engine is an eight-cylinder internal combustion engine with all eight cylinders mounted in a straight line along the crankcase. The type has been produced in side-valve, IOE, overhead-valve, sleeve-valve, and overhead-cam configurations.

<span class="mw-page-title-main">Chrysler LA engine</span> Reciprocating internal combustion engine

The LA engine is a family of overhead-valve small-block 90° V-configured gasoline engines built by Chrysler Corporation between 1964 and 2003. A replacement of the Chrysler A engine, they were factory-installed in passenger vehicles, trucks and vans, commercial vehicles, marine and industrial applications. Their combustion chambers are wedge-shaped, rather than polyspheric, as in the A engine, or hemispheric in the Chrysler Hemi. LA engines have the same 4.46 in (113 mm) bore spacing as the A engines.

<span class="mw-page-title-main">Iron Duke engine</span> Reciprocating internal combustion engine

The Iron Duke engine is a 151 cu in (2.5 L) straight-4 piston engine built by the Pontiac Motor Division of General Motors from 1977 until 1993. Originally developed as Pontiac's new economy car engine, it was used in a wide variety of vehicles across GM's lineup in the 1980s as well as supplied to American Motors Corporation (AMC). The engine was engineered for fuel efficiency, smooth operation, and long life, not for performance. Total Duke engine production is estimated to be between 3.8 and 4.2 million units.

<span class="mw-page-title-main">Flat-six engine</span> Horizontally opposed 6-cylinder piston engine

A flat-six engine, also known as a horizontally opposed-six, is a six-cylinder piston engine with three cylinders on each side of a central crankshaft. The most common type of flat-six engine is the boxer-six engine, where each pair of opposed cylinders moves inwards and outwards at the same time. An alternative configuration for flat engines is a 180-degree V engine, where both cylinders move to the right then the left at the same time.

<span class="mw-page-title-main">Ford Essex V6 engine (Canadian)</span> Reciprocating internal combustion engine

The Essex V6 is a 90° V6 engine family built by the Ford Motor Company at the Essex Engine Plant in Windsor, Ontario, Canada. This engine is unrelated to Ford's British Essex V6. Introduced in 1982, versions of the Essex V6 engine family were used in subcompact through to large cars, vans, minivans, and some pickup trucks. The Essex V6 was last used in the 2008 regular-cab F-150, after which it was succeeded by a version of the Ford Cyclone engine. An industrial version of the engine was available until 2015.

<span class="mw-page-title-main">Balance shaft</span> Weights used to balance otherwise unbalanced engine movement

Balance shafts are used in piston engines to reduce vibration by cancelling out unbalanced dynamic forces. The counter balance shafts have eccentric weights and rotate in opposite direction to each other, which generates a net vertical force.

The Ferrari Dino engine is a line of mechanically similar V6 and V8 engines produced by Ferrari for about 40 years from the late 1950s into the early 2000s.

Engine balance refers to how the inertial forces produced by moving parts in an internal combustion engine or steam engine are neutralised with counterweights and balance shafts, to prevent unpleasant and potentially damaging vibration. The strongest inertial forces occur at crankshaft speed and balance is mandatory, while forces at twice crankshaft speed can become significant in some cases.

<span class="mw-page-title-main">Crossplane</span> Crankshaft with throws extending in two planes

The crossplane or cross-plane is a crankshaft design for piston engines with a 90° angle between the crank throws. The crossplane crankshaft is the most popular configuration used in V8 road cars.

<span class="mw-page-title-main">V8 engine</span> Piston engine with eight cylinders in V-configuration

A V8 engine is an eight-cylinder piston engine in which two banks of four cylinders share a common crankshaft and are arranged in a V configuration.

<span class="mw-page-title-main">Harmonic damper</span>

A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be an interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with the crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks, or V6 and straight-three engines with uneven firing order. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) and diameter, which are dependent on the damping material/method used, to reduce mechanical Q factor, or damp, crankshaft resonances.

A big bang engine has an unconventional firing order designed so that some of the power strokes occur simultaneously or in close succession. This is achieved by changing the ignition timing, changing or re-timing the camshaft, and sometimes in combination with a change in crankpin angle. The goal is to change the power delivery characteristics of the engine. A regular firing multi-cylinder engine fires at approximately even intervals, giving a smooth-running engine. Because a big-bang engine has uneven power delivery, they tend to run rougher and generate more vibration than an even-firing engine.

Ferrari made four naturally-aspirated V6 racing engines designed for Formula One; between 1958 and 1966. The Formula One regulations for 1954–1960 limited naturally aspirated engines to 2500 cc, and for the 1958 season, there was a change from alcohol fuels to avgas. The 246 F1 used a 2,417.34 cc Dino V6 engine with a 65° angle between the cylinder banks. The power output was 280 PS at 8500 rpm. Bore X Stroke: 85 mm × 71 mm This was the first use of a V6 engine in a Formula One car, but otherwise the 246 F1 was a conventional front-engine design. The Ferrari 246 F1 was good enough to win a World Championship for Mike Hawthorn and a second place in the Constructors' Championship for Ferrari.

References

  1. Erjavec, Jack (2005). Automotive Technology: A Systems Approach. Cengage Learning. p. 598. ISBN   978-1-4018-4831-6 . Retrieved 24 November 2019.
  2. "V8 Engines". www.backfire.ca. Retrieved 24 November 2019.
  3. "Engine Specs Database". www.boxwrench.net. Retrieved 4 February 2009.
  4. Worner, Randy (December 21, 2022). "LS Firing Order and Cylinder Numbers". Chevy Geek. Retrieved April 25, 2023.
  5. Hillier, Victor Albert Walter; Coombes, Peter (2004). Hillier's Fundamentals of Motor Vehicle Technology. Nelson Thornes. p. 48. ISBN   978-0-7487-8082-2 . Retrieved 24 November 2019.
  6. "Science and Implementation of High Performance Exhaust Systems". www.epi-eng.com. Retrieved 21 November 2019.
  7. "Lamborghini Gallardo LP560-4: New Gallardo V10 bends design rules". www.evo.co.uk. Retrieved 24 November 2019.
  8. "Inertial torque". www.ashonbikes. Archived from the original on 9 July 2019.