Mass flow sensor

Last updated

MAF sensor in a 2006-2015 automotive diesel engine Bosch Mass Air Flow Sensor location in the engine bay (Opel Antara 2.0 CDTI).jpg
MAF sensor in a 2006-2015 automotive diesel engine

A mass (air) flow sensor (MAF) is a sensor used to determine the mass flow rate of air entering a fuel-injected internal combustion engine.

Contents

The air mass information is necessary for the engine control unit (ECU) to balance and deliver the correct fuel mass to the engine. Air changes its density with temperature and pressure. In automotive applications, air density varies with the ambient temperature, altitude and the use of forced induction, which means that mass flow sensors are more appropriate than volumetric flow sensors for determining the quantity of intake air in each cylinder.

There are two common types of mass airflow sensors in use on automotive engines. These are the vane meter and the hot wire. Neither design employs technology that measures air mass directly. However, with additional sensors and inputs, an engine's ECU can determine the mass flow rate of intake air.

Both approaches are used almost exclusively on electronic fuel injection (EFI) engines. Both sensor designs output a 0.0–5.0 volt or a pulse-width modulation (PWM) signal that is proportional to the air mass flow rate, and both sensors have an intake air temperature (IAT) sensor incorporated into their housings for most post on-board diagnostics (OBDII) vehicles. Vehicles prior to 1996 could have MAF without an IAT. An example is 1994 Infiniti Q45.

When a MAF sensor is used in conjunction with an oxygen sensor, the engine's air/fuel ratio can be controlled very accurately. The MAF sensor provides the open-loop controller predicted air flow information (the measured air flow) to the ECU, and the oxygen sensor provides closed-loop feedback in order to make minor corrections to the predicted air mass. Also see manifold absolute pressure sensor (MAP sensor). Since around 2012, some MAF sensors include a humidity sensor. [1]

Moving vane meter

Intake-air flap type flowmeter Prutokomer s otocnou klapkou.jpg
Intake-air flap type flowmeter

The VAF (vane air flow) sensor measures the momentum of the air flow into the engine with a spring-loaded air vane (flap/door) attached to a variable resistor (potentiometer). The vane moves in proportion to the momentum of the airflow. A voltage is applied to the potentiometer and a voltage appears on the output terminal of the potentiometer proportional to the angle the vane rotates, or the movement of the vane may directly regulate the amount of fuel injected, as in the K-Jetronic system.

Many VAF sensors have an air-fuel adjustment screw, which opens or closes a small air passage on the side of the VAF sensor. This screw controls the air-fuel mixture by letting a metered amount of air flow past the air flap, thereby leaning or richening the mixture. By turning the screw clockwise the mixture is enriched and counterclockwise the mixture is leaned.

The vane moves because of the drag force of the air flow against it; it does not measure volume or mass directly. The drag force depends on air density (air density in turn depends on air temperature), air velocity and the shape of the vane, see drag equation. Some VAF sensors include an additional intake air temperature sensor (IAT sensor) to allow the engines ECU to calculate the density of the air, and the fuel delivery accordingly.

The vane meter approach has some drawbacks:

Hot wire sensor (MAF)

A mass airflow sensor Mass-airflow.jpg
A mass airflow sensor
A hot thick film-grid MAF sensor. The intake air temperature sensor is visible outside, the film-grid is inside. MAF sensor bosch.jpg
A hot thick film-grid MAF sensor. The intake air temperature sensor is visible outside, the film-grid is inside.

A hot wire mass airflow sensor determines the mass of air flowing into the engine's air intake system. The theory of operation of the hot wire mass airflow sensor is similar to that of the hot wire anemometer (which determines air velocity). This is achieved by heating a wire suspended in the engine's air stream, like a toaster wire, by applying a constant voltage over the wire. The wire's electrical resistance increases as the wire's temperature increases, which varies the electrical current flowing through the circuit, according to Ohm's law. When air flows past the wire, the wire cools, decreasing its resistance, which in turn allows more current to flow through the circuit, since the supply voltage is a constant. As more current flows, the wire's temperature increases until the resistance reaches equilibrium again. The current increase or decrease is proportional to the mass of air flowing past the wire. The integrated electronic circuit converts the proportional measurement into a proportional voltage which is sent to the ECU. [2]

If air density increases due to pressure increase or temperature drop, but the air volume remains constant, the denser air will remove more heat from the wire indicating a higher mass airflow. Unlike the vane meter's paddle sensing element, the hot wire responds directly to air density. This sensor's capabilities are well suited to support the gasoline combustion process which fundamentally responds to air mass, not air volume. (See stoichiometry.)

This sensor sometimes employs a mixture screw, but this screw is fully electronic and uses a variable resistor (potentiometer) instead of an air bypass screw. The screw needs more turns to achieve the desired results. A hot wire burn-off cleaning circuit is employed on some of these sensors. A burn-off relay applies a high current through the platinum hot wire after the vehicle is turned off for a second or so, thereby burning or vaporizing any contaminants that have stuck to the platinum hot wire element.

The hot film MAF sensor works somewhat similar to the hot wire MAF sensor, but instead it usually outputs a frequency signal. This sensor uses a hot film-grid instead of a hot wire. [3] It is commonly found in late 1980s and early 1990s fuel-injected vehicles. The output frequency is directly proportional to the air mass entering the engine. So as mass flow increases so does frequency. These sensors tend to cause intermittent problems due to internal electrical failures. The use of an oscilloscope is strongly recommended to check the output frequency of these sensors. Frequency distortion is also common when the sensor starts to fail. Many technicians in the field use a tap test with very conclusive results. Not all HFM systems output a frequency. In some cases, this sensor works by outputting a regular varying voltage signal.

A micro-bridge uses the same principles but arranged on a silicon chip. [4]

Coldwire sensor

A Holden Commodore's MAF sensor VZ MAF.jpg
A Holden Commodore's MAF sensor

The GM LS engine series (as well as others) use a coldwire MAF system (produced by AC Delco) that works similarly to the hot-wire MAF system; however, it uses an additional "cold" resistor to measure the ambient air and provide a reference for the "hot" resistor element used to measure the air flow. [5]

The mesh on the MAF is used to smooth out airflow to ensure the sensors have the best chance of a steady reading. It is not used for measuring the air flow per se. In situations where owners use oiled-gauze air filters, it is possible for excess oil to coat the MAF sensor and skew its readings. Indeed, General Motors has issued a Technical Service Bulletin, indicating problems from rough idle all the way to possible transmission damage resulting from the contaminated sensors. To clean the delicate MAF sensor components, a specific MAF sensor cleaner or electronics cleaner should be used, not carburetor or brake cleaners, which can be too aggressive chemically. Instead, the liquid phase of MAF sensor cleaners and electronics cleaners is typically based on hexanes or heptanes with little to no alcohol content and use either carbon dioxide or HFC-152a as aerosol propellants. The sensors should be gently sprayed from a careful distance to avoid physically damaging them and then allowed to thoroughly dry before reinstalling. Manufacturers claim that a simple but extremely reliable test to ensure correct functionality is to tap the unit with the back of a screwdriver while the car is running, and if this causes any changes in the output frequency then the unit should be discarded and an OEM replacement installed.

Kármán vortex sensor

A von Karman vortex street Vortex-street-animation.gif
A von Kármán vortex street

A Kármán vortex sensor works by disrupting the air stream with a perpendicular bow. Providing that the incoming flow is laminar, the wake consists of an oscillatory pattern of Kármán vortices. The frequency of the resulting pattern is proportional to the air velocity.

These vortices can either be read directly as a pressure pulse against a sensor, or they can be made to collide with a mirror which will then interrupt or transmit a reflected light beam to generate the pulses in response to the vortices. The first type can only be used in pull-thru air (prior to a turbo- or supercharger), while the second type could theoretically be used push- or pull-thru air (before or after a forced induction application like the previously mentioned super- or turbocharger). Instead of outputting a constant voltage modified by a resistance factor, this type of MAF outputs a frequency which must then be interpreted by the ECU. This type of MAF can be found on all DSMs (Mitsubishi Eclipse, Eagle Talon, Plymouth Laser), many Mitsubishis, some Toyotas and Lexus, and some BMWs, among others. [6]

Membrane sensor

An emerging technology utilizes a very thin electronic membrane placed in the air stream. The membrane has a thin film temperature sensor printed on the upstream side, and one on the downstream side. A heater is integrated in the center of the membrane which maintains a constant temperature similar to the hot-wire approach. Without any airflow, the temperature profile across the membrane is uniform. When air flows across the membrane, the upstream side cools differently from the downstream side. The difference between the upstream and downstream temperature indicates the mass airflow. The thermal membrane sensor is also capable of measuring flow in both directions, which sometimes occur in pulsating situations. Technological progress allows this kind of sensor to be manufactured on the microscopic scale as microsensors using microelectromechanical systems technology. Such a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches. See also MEMS sensor generations.

Laminar flow elements

Laminar flow elements measure the volumetric flow of gases directly. They operate on the principle that, given laminar flow, the pressure difference across a pipe is linearly proportional to the flow rate. Laminar flow conditions are present in a gas when the Reynolds number of the gas is below the critical figure. The viscosity of the fluid must be compensated for in the result. Laminar flow elements are usually constructed from a large number of parallel pipes to achieve the required flow rating.

See also

Related Research Articles

<span class="mw-page-title-main">Anemometer</span> Instrument for measuring wind speed

In meteorology, an anemometer is a device that measures wind speed and direction. It is a common instrument used in weather stations. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti (1404–1472) in 1450.

<span class="mw-page-title-main">Potentiometer</span> Type of resistor, usually with three terminals

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Hall effect sensor</span> Devices that measure magnetic field strength using the Hall effect

A Hall effect sensor is any sensor incorporating one or more Hall elements, each which produce a voltage proportional to one axial component of the magnetic field vector B using the Hall effect.

<span class="mw-page-title-main">Computer fan control</span> Management of the rotational speed of a computer fan

Fan control is the management of the rotational speed of an electric fan. In computers, various types of computer fans are used to provide adequate cooling, and different fan control mechanisms balance their cooling capacities and noise they generate. This is commonly accomplished by the motherboards having hardware monitoring circuitry, which can be configured by the end-user through BIOS or other software to perform fan control.

An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) or probe or sond, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

Jetronic is a trade name of a manifold injection technology for automotive petrol engines, developed and marketed by Robert Bosch GmbH from the 1960s onwards. Bosch licensed the concept to many automobile manufacturers. There are several variations of the technology offering technological development and refinement.

<span class="mw-page-title-main">MAP sensor</span> Sensor in an internal combustion engines electronic control system

The manifold absolute pressure sensor is one of the sensors used in an internal combustion engine's electronic control system.

<span class="mw-page-title-main">Engine control unit</span> Computer that adjusts electronics in an internal combustion propulsion system

An engine control unit (ECU), also called an engine control module (ECM), is a device which controls multiple systems of an internal combustion engine in a single unit. Systems commonly controlled by an ECU include the fuel injection and ignition systems.

MAFless tuning is a method of operating the fuel injection system on a gasoline-powered motor vehicle whereby the mass airflow meter, or MAF, is removed.

<span class="mw-page-title-main">Motronic</span>

Motronic is the trade name given to a range of digital engine control units developed by Robert Bosch GmbH which combined control of fuel injection and ignition in a single unit. By controlling both major systems in a single unit, many aspects of the engine's characteristics can be improved.

A throttle is a mechanism by which fluid flow is managed by constriction or obstruction.

An air-fuel ratio meter monitors the air–fuel ratio of an internal combustion engine. Also called air–fuel ratio gauge, air–fuel meter, or air–fuel gauge, it reads the voltage output of an oxygen sensor, sometimes also called AFR sensor or lambda sensor.

<span class="mw-page-title-main">Digifant engine management system</span>

Digifant is an Engine Management System operated by an Engine Control Unit that actuates outputs, such as fuel injection and ignition systems, using information derived from sensor inputs, such as engine speed, exhaust oxygen and intake air flow. Digifant was designed by Volkswagen Group, in cooperation with Robert Bosch GmbH.

Trionic T5.5 is an engine management system in the Saab Trionic range. It controls ignition, fuel injection and turbo boost pressure. The system was introduced in the 1993 Saab 9000 2.3 Turbo with B234L and B234R engine.

<span class="mw-page-title-main">Electronic Diesel Control</span>

Electronic Diesel Control is a diesel engine fuel injection control system for the precise metering and delivery of fuel into the combustion chamber of modern diesel engines used in trucks and cars.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

<span class="mw-page-title-main">Lucas 14CUX</span>

The Lucas 14CUX is an automotive electronic fuel injection system developed by Lucas Industries and fitted to the Rover V8 engine in Land Rover vehicles between 1990 and 1995. The system was also paired with the Rover V8 by a number of low-volume manufacturers such as TVR, Marcos, Ginetta, and Morgan.

Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.

References

  1. "Gears Magazine | A Breath of Fresh Air: 8-Pin Mass Airflow Sensors". Gears Magazine. Retrieved 2 December 2020.
  2. "How they work - Denso". www.denso-am.eu. Retrieved 2 December 2020.
  3. "Hot-film air-mass meter, type HFM 2" (PDF). Bosch. Retrieved 10 September 2021 via Farnell.
  4. "AWM Series Microbridge Mass Airflow Sensors Introduction" (PDF). US: Honeywell. Retrieved 1 November 2021.
  5. Gilles, Tim (2011). Automotive Service: Inspection, Maintenance, Repair (4th ed.). Cengage Learning. ISBN   978-1-1111-2861-6.
  6. "Air Flow Sensors" (PDF). Archived from the original (PDF) on 14 January 2010. Retrieved 15 September 2009.