Air cooling

Last updated
A Cooler Master computer heat sink has many heat pipes. Cooler Master V8.jpg
A Cooler Master computer heat sink has many heat pipes.
CPU cooler Thermalright Le Grand Macho RT installed into the computer case. CPU cooler Thermalright Le Grand Macho RT installed into computer case - 2018-05-20.jpg
CPU cooler Thermalright Le Grand Macho RT installed into the computer case.

Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by making them integral or by attaching them tightly to the object's surface (to ensure efficient heat transfer). In the case of the latter, it is done by using a fan blowing air into or onto the object one wants to cool. The addition of fins to a heat sink increases its total surface area, resulting in greater cooling effectiveness. There are two types of cooling pads that can used for air cooling: one is the honeycomb design and another one is excelsior.[ citation needed ]

Contents

In all cases, the air has to be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air).

Derating at high altitude

When operating in an environment with lower air pressure like high altitude or airplane cabins, the cooling capacity has to be derated compared to that of sea level.

A rule-of-thumb formula to note: 1 – (h/17500) = derating factor. Where h is the height over sea level in meters. And the result is the factor that should be multiplied with the cooling capacity in [W] to get the cooling capacity at the specified height over sea level. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">Radiator</span> Type of heat exchanger; radiant body through water or other liquids

A radiator is a heat exchanger used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Quiet PC</span> Type of personal computer

A quiet, silent or fanless PC is a personal computer that makes very little or no noise. Common uses for quiet PCs include video editing, sound mixing and home theater PCs, but noise reduction techniques can also be used to greatly reduce the noise from servers. There is currently no standard definition for a "quiet PC", and the term is generally not used in a business context, but by individuals and the businesses catering to them.

<span class="mw-page-title-main">Heat sink</span> Passive heat exchanger that transfers the heat

A heat sink is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks are used to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.

<span class="mw-page-title-main">Heat pipe</span> Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

<span class="mw-page-title-main">Water cooling</span> Method of heat removal from components and industrial equipment

Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non-toxic; however, it can contain impurities and cause corrosion.

Internal combustion engine cooling uses either air or liquid to remove the waste heat from an internal combustion engine. For small or special purpose engines, cooling using air from the atmosphere makes for a lightweight and relatively simple system. Watercraft can use water directly from the surrounding environment to cool their engines. For water-cooled engines on aircraft and surface vehicles, waste heat is transferred from a closed loop of water pumped through the engine to the surrounding atmosphere by a radiator.

<span class="mw-page-title-main">Computer cooling</span> The process of removing waste heat from a computer

Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives.

<span class="mw-page-title-main">Air-cooled engine</span> Type of engine

Air-cooled engines rely on the circulation of air directly over heat dissipation fins or hot areas of the engine to cool them in order to keep the engine within operating temperatures. Air-cooled designs are far simpler than their liquid-cooled counterparts, which require a separate radiator, coolant reservoir, piping and pumps.

<span class="mw-page-title-main">Thermal management (electronics)</span> Regulation of the temperature of electronic circuitry to prevent inefficiency or failure

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

<span class="mw-page-title-main">Passive cooling</span> Building design that reduces inside temperatures without air conditioning

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building.

<span class="mw-page-title-main">Convection heater</span>

A convection heater is a heater that uses convection currents to heat and circulate air. These currents circulate throughout the body of the appliance and across its heating element. This process, following the principle of thermal conduction, heats the air, reducing its density relative to colder air and causing it to rise.

<span class="mw-page-title-main">Heater core</span>

A heater core is a radiator-like device used in heating the cabin of a vehicle. Hot coolant from the vehicle's engine is passed through a winding tube of the core, a heat exchanger between coolant and cabin air. Fins attached to the core tubes serve to increase surface area for heat transfer to air that is forced past them by a fan, thereby heating the passenger compartment.

<span class="mw-page-title-main">Supercharger</span> Air compressor for an internal combustion engine

In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement.

<span class="mw-page-title-main">Turbine blade</span> Aerofoil; individual component of a turbine disc

A turbine blade is a radial aerofoil mounted in the rim of a turbine disc and which produces a tangential force which rotates a turbine rotor. Each turbine disc has many blades. As such they are used in gas turbine engines and steam turbines. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor. The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling that can be categorized as internal and external cooling, and thermal barrier coatings. Blade fatigue is a major source of failure in steam turbines and gas turbines. Fatigue is caused by the stress induced by vibration and resonance within the operating range of machinery. To protect blades from these high dynamic stresses, friction dampers are used.

<span class="mw-page-title-main">Radiator (engine cooling)</span> Heat exchangers used for cooling internal combustion engines

Radiators are heat exchangers used for cooling internal combustion engines, mainly in automobiles but also in piston-engined aircraft, railway locomotives, motorcycles, stationary generating plants or any similar use of such an engine.

<span class="mw-page-title-main">Chevrolet Series M Copper-Cooled</span> Motor vehicle

The 1923 Chevrolet Series M Copper-Cooled was an automobile made to be completely air-cooled by Chevrolet in 1923. It was designed by Charles F. Kettering, head engineer of Delco, the General Motors research division wing in Dayton, Ohio. The automobile used a body style from its predecessor, but incorporated an air-cooled engine. Air cooling, as opposed to water-based cooling, was much more practical in a sense because it did not require a radiator, nor the piping that came with it. Although air cooling was not new to the time period, it was new to engines of that scale. The Copper-Cooled Chevrolet was in fact a feasible project; however, the final product did not live up to the standards that Kettering had imagined. The car dangerously overheated in hot weather, and posed a safety hazard to the drivers. Only a few made it to the sales floor, only to be recalled and destroyed by Chevrolet. The 1923 Chevrolet Series M Copper-Cooled consumed extensive amounts of resources to develop and was a failure in the end. The engine was manufactured as an alternative to the Franklin which also used an in-line air-cooled engine.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

<span class="mw-page-title-main">Cylinder Head Temperature gauge</span>

A Cylinder Head Temperature gauge (CHT) measures the cylinder head temperature of an engine. Commonly used on air-cooled engines, the head temperature gauge displays the work that the engine is performing more quickly than an oil or water temperature gauge. As the engine works at high speed or uphill, head temperature will increase quickly. The meter can be digital or analog.

References

  1. ericsson.net – Forced air cooling of DC/DC power modules at high altitude, Design Note 025 Archived 2011-08-11 at the Wayback Machine table "Cooling efficiency"

Further reading