This article needs additional citations for verification .(March 2022) |
In an internal combustion engine, the engine block is the structure that contains the cylinders and other components. The engine block in an early automotive engine consisted of just the cylinder block, to which a separate crankcase was attached. Modern engine blocks typically have the crankcase integrated with the cylinder block as a single component. Engine blocks often also include elements such as coolant passages and oil galleries.
The term "cylinder block" is often used interchangeably with "engine block". However, technically, the block of a modern engine (i.e., multiple cylinders integrated with another component) would be classified as a monobloc.
The main structure of an engine typically consists of the cylinders, coolant passages, oil galleries, crankcase, and cylinder head(s). The first production engines of the 1880s to 1920s usually used separate components for each element, which were bolted together during engine assembly. Modern engines, however, often combine many elements into a single component to reduce production costs.
The evolution from separate components to monobloc engine blocks has gradually progressed since the early 20th century. The integration of elements has relied on the development of foundry and machining techniques. For example, a practical, low-cost V8 engine was not feasible until Ford developed the methods used to build its flathead V8 engine. Other manufacturers then applied those techniques to their engines.
A cylinder block is a structure that contains the cylinder, plus any cylinder sleeves and coolant passages. In the earliest decades of internal combustion engine development, cylinders were usually cast individually, so cylinder blocks were usually produced separately for each cylinder. Following that, engines began to combine two or three cylinders into a single-cylinder block, with an engine combining several of these cylinder blocks.
In early engines with multiple cylinder banks –such as V6, V8, or flat-6 engines –each bank was typically made of one or multiple separate cylinder blocks. Since the 1930s, mass production methods have developed to allow both banks of cylinders to be integrated into the same cylinder block.
Wet liner cylinder blocks use cylinder walls that are entirely removable and fit into the block using special gaskets. They are called "wet liners" because their outer sides come in direct contact with the engine's coolant. In other words, the liner is the entire cylinder wall, rather than merely a sleeve.
The advantages of wet liners are a lower mass, reduced space requirements, and coolant being heated faster from a cold start, reducing start-up fuel consumption and heating the car cabin sooner.
Dry liner cylinder blocks use either the block's material or a discrete liner inserted into the block to form the backbone of the cylinder wall. Additional sleeves are inserted within, which remain "dry" outside, surrounded by the block's material.
For either wet or dry liner designs, the liners (or sleeves) can be replaced, potentially allowing an engine overhaul or rebuild without replacing the block itself. However, there are more practical repair options.
The crankcase is the structure that houses the crankshaft. As with cylinder blocks, this is primarily an integrated component in modern engines.
Engine blocks are typically cast from either cast iron or an aluminium alloy. Aluminium blocks are much lighter and transfer heat more effectively to coolant, but iron blocks retain some advantages, such as durability and reduced thermal expansion.
Weight reductions through material selection. Presently, most of the engine blocks in mass production are gray castings. Reducing weight has resulted in using aluminum-silicon alloys more frequently for the engine block in small-displacement engines. Engine blocks of comparable design, but using Al-Si alloys, are not lighter than cast iron engine blocks in the same ratio as that for the specific weights of the materials.
In engine blocks made of gray cast iron, weight can be reduced by optimizing the structure and thin-wall casting. With this casting technique, a wall thickness of as little as about 3 mm is generally possible. In comparison, the walls of cast iron engine blocks are usually from 4.0 to 5.5 mm thick.
Using vermicular graphite cast iron (GGV), a casting material with great strength, enables weight reductions by about 30% compared to conventional casting materials such as GG 25. Weight reduction, to this extent, requires engineering for the engine block, taking into account the particular needs of the material. [1]
An engine where all the cylinders share a common block is called a monobloc engine. Most modern engines use a monobloc design, and few have a separate block for each cylinder. This has led to the term "engine block," which usually implies a monobloc design, with "monobloc" rarely used.
In the early years of the internal combustion engine, casting technology couldn't produce large castings with complex internal cores (for water jackets etc). Most early engines, particularly those with more than four cylinders, had their cylinders cast as pairs or triplets of cylinders, then bolted to a separate crankcase.
As casting techniques improved, an entire cylinder block of 4, 6, or 8 cylinders could be produced in one piece. This monobloc construction was more straightforward and more cost-effective to produce. All the cylinders and crankcase could be made in a single component for straight engine cylinder layouts. One of the early engines produced using this method is the 4-cylinder engine in the Ford Model T, introduced in 1908. The technique spread to straight-six engines and was commonly used by the mid-1920s.
Up until the 1930s, most V engines retained a separate block casting for each cylinder bank, with both bolted onto a common crankcase (itself a separate casting). For economy, some engines were designed to use identical castings for each bank, left and right. [3] : 120 A rare exception was the Lancia 22½° narrow-angle V12 of 1919, which used a single block casting combining both banks. [3] : 50–53 The Ford flathead V8 –introduced in 1932 –represented a significant development in the production of affordable V engines. It was the first V8 engine with a single-engine block casting, putting a V8 into an affordable car for the first time. [4]
The communal water jacket of monobloc designs permitted closer spacing between cylinders. The monobloc design approach also improved engines' torsional rigidity as cylinder numbers, engine lengths, and power ratings increased.
Most engine blocks today, except some unusual V or radial engines and large marine engines, use a monobloc design with one block for all cylinders plus an integrated crankcase. In such cases, the skirts of the cylinder banks form a crankcase area of sorts, which is still often called a crankcase despite no longer being a discrete part.
Using steel cylinder liners and bearing shells minimizes the effect of the relative softness of aluminium. Some engine designs use plasma transferred wire arc thermal spraying, instead of cylinder sleeves, to further reduce weight. These types of engines can also be made of compacted graphite iron, such as in some diesel engines. [5]
Some modern consumer-grade small engines use a monobloc design where the cylinder head, block, and half of the crankcase share the same casting. Apart from cost, one reason for this is to produce an overall lower engine height.[ citation needed ] The primary disadvantage can be that repairs become more time-consuming and impractical.
An example of engines with integrated cylinder heads are the Honda GC-series and GXV-series engines, which are sometimes called "Uniblock" by Honda. [6]
Several cars with transverse engines have used an engine block consisting of an integrated transmission and crankcase. Cars that have used this arrangement include the 1966-1973 Lamborghini Miura [7] and cars using the BMC A-series and E-series engines. [8] [9] This design often results in the engine and transmission sharing the same oil.
Motorcycles such as the Honda CB750 use a similar layout, with the cylinder block and crankcase integrated with part of the transmission.
Many farm tractor designs integrate the cylinder block, crankcase, transmission, and rear axle into a single unit. An early example is the Fordson tractor.
In a piston engine, the cylinder head sits above the cylinders, forming the roof of the combustion chamber. In sidevalve engines the head is a simple plate of metal containing the spark plugs and possibly heat dissipation fins. In more modern overhead valve and overhead camshaft engines, the head is a more complicated metal block that also contains the inlet and exhaust passages, and often coolant passages, Valvetrain components, and fuel injectors.
The Rover K-series engine is a series of internal combustion engines built by Powertrain Ltd, a sister company of MG Rover. The engine was a straight-four cylinder built in two forms, SOHC and DOHC, ranging from 1.1 to 1.8 L; 67.9 to 109.6 cu in.
The Ford 335 engine family was a group of engines built by the Ford Motor Company between 1969 and 1982. The "335" designation reflected Ford management's decision to produce an engine of that size with room for expansion during its development. This engine family began production in late 1969 with a 351 cu in (5.8 L) engine, commonly called the 351C. It later expanded to include a 400 cu in (6.6 L) engine which used a taller version of the engine block, commonly referred to as a tall deck engine block, a 351 cu in (5.8 L) tall deck variant, called the 351M, and a 302 cu in (4.9 L) engine which was exclusive to Australia.
In a reciprocating engine, the cylinder is the space in which a piston travels.
The Northstar engine is a family of high-performance 90° V engines produced by General Motors between 1993 and 2011. Regarded as GM's most technically complex engine, the original double overhead cam, four valve per cylinder, aluminum block/aluminum head V8 design was developed by Oldsmobile R&D, but is most associated with Cadillac's Northstar series.
In car tuning culture, an engine swap is the process of removing a car's original engine and replacing it with another. This may be a like-for-like replacement, or to install a non-factory specification engine. Typically, an engine swap is performed for performance, swapping-in a more powerful engine; however, an engine swap may also be performed for maintenance, where older engines may have a shortage of spare parts, and so a modern replacement may be more easily and cheaply maintained.
The Oldsmobile V8, also referred to as the Rocket, is a series of engines that was produced by Oldsmobile from 1949 until 1990. The Rocket, along with the 1949 Cadillac V8, were the first post-war OHV crossflow cylinder head V8 engines produced by General Motors. Like all other GM divisions, Olds continued building its own V8 engine family for decades, adopting the corporate Chevrolet 350 small-block and Cadillac Northstar engine only in the 1990s. All Oldsmobile V8s were assembled at plants in Lansing, Michigan while the engine block and cylinder heads were cast at Saginaw Metal Casting Operations.
The term Cadillac V8 may refer to any of a number of V8 engines produced by the Cadillac division of General Motors since it pioneered the first such mass-produced engine in 1914.
Nikasil is a trademarked electrodeposited lipophilic nickel matrix silicon carbide coating for engine components, mainly piston engine cylinder liners.
The Ford flathead V8 is a V8 engine with a flat cylinder head introduced by the Ford Motor Company in 1932 and built by Ford through 1953. During the engine's first decade of production, when overhead-valve engines were used by only a small minority of makes, it was usually known simply as the Ford V‑8, and the first car model in which it was installed, the Model 18, was often called simply the "Ford V-8" after its new engine. An automotive milestone as the first affordable V8, it ranks as one of the company's most important developments. The engine was intended to be used for big passenger cars and trucks; it was installed in such until 1953, making the engine's 21-year production run for the U.S. consumer market longer than the 19-year run of the Ford Model T engine. It was also built independently by Ford licensees.. The engine was named on Ward's list of the 10 best engines of the 20th century. It was a staple of hot rodders in the 1950s, and it remains famous in the classic car hobbies even today, despite the huge variety of other popular V8s that followed.
A V8 engine is an eight-cylinder piston engine in which two banks of four cylinders share a common crankshaft and are arranged in a V configuration.
The Paxman Ventura is an internal combustion diesel engine for railway locomotives, built by Davey, Paxman & Co.
Owen Nacker was an American automotive engineer.
A monobloc or en bloc engine is an internal-combustion piston engine some of whose major components are formed, usually by casting, as a single integral unit, rather than being assembled later. This has the advantages of improving mechanical stiffness, and improving the reliability of the sealing between them.
A long-bolt or through-bolt engine is an internal combustion piston engine where, following usual practice, the cylinder head is held down by bolts or studs. Conventionally the cylinder head is bolted to the cylinder block and the crankshaft main bearings are in turn bolted to the crankcase by separate bolts. In the long-bolt engine however, a single set of long bolts is used, spanning from the cylinder head right through to the crankshaft bearing caps.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
The Ferrari flat-12 engine family is a series of flat-12 DOHC petrol engines produced by Ferrari from 1964 to 1996. The first racing Ferrari flat-12, the Mauro Forghieri-designed Tipo 207, was introduced in the Ferrari 1512 F1 car in 1964. Later flat-12 racing engines were used in Ferrari Formula One and sports racing cars from 1968 until 1980, including the 212 E Montagna, 312 B series, 312 PB and 312 T series. The roadgoing flat-12 engines were introduced with the 365 GT4 BB and were produced in various versions until the end of F512M production in 1996.
The Argus 140/150 hp 6-cylinder aircraft engine from 1913 was a six-cylinder, water cooled inline engine built by the German Argus Motoren company from 1913 to 1914.
The Volkswagen-Audi V8 engine family is a series of mechanically similar, gasoline-powered and diesel-powered, V-8, internal combustion piston engines, developed and produced by the Volkswagen Group, in partnership with Audi, since 1988. They have been used in various Volkswagen Group models, and by numerous Volkswagen-owned companies. The first spark-ignition gasoline V-8 engine configuration was used in the 1988 Audi V8 model; and the first compression-ignition diesel V8 engine configuration was used in the 1999 Audi A8 3.3 TDI Quattro. The V8 gasoline and diesel engines have been used in most Audi, Volkswagen, Porsche, Bentley, and Lamborghini models ever since. The larger-displacement diesel V8 engine configuration has also been used in various Scania commercial vehicles; such as in trucks, buses, and marine (boat) applications.