Monobloc engine

Last updated
De Dion-Bouton engine with monobloc cylinder heads, but cylinders separate from crankcase c. 1905 De Dion-Bouton engine (Rankin Kennedy, Modern Engines, Vol III).jpg
De Dion-Bouton engine with monobloc cylinder heads, but cylinders separate from crankcase c. 1905

A monobloc or en bloc engine is an internal-combustion piston engine some of whose major components (such as cylinder head, cylinder block, or crankcase) are formed, usually by casting, as a single integral unit, rather than being assembled later. This has the advantages of improving mechanical stiffness, and improving the reliability of the sealing between them.

Contents

Monobloc techniques date back to the beginnings of the internal combustion engine. Use of this term has changed over time, usually to address the most pressing mechanical problem affecting the engines of its day. There have been three distinct uses of the technique:

In most cases, any use of the term describes single-unit construction that is opposed to the more common contemporary practice. Where the monobloc technique has later become the norm, the specific term fell from favour. It is now usual practice to use monobloc cylinders and crankcases, but a monobloc head (for a water-cooled inline engine at least) would be regarded as peculiar and obsolescent.

Cylinder head

Napier engine, with monobloc head, separate cylinder blocks Napier petrol boat engine, side section (Rankin Kennedy, Modern Engines, Vol III).jpg
Napier engine, with monobloc head, separate cylinder blocks
DB 605 inverted aircraft engine of WW2, with monobloc cylinder blocks and heads Daimler DB 605 cutaway.jpg
DB 605 inverted aircraft engine of WW2, with monobloc cylinder blocks and heads
Sectioned view of an air-cooled single cylinder, with monobloc head and access plug above the side valve Air-cooled monobloc cylinder, section (Manual of Driving and Maintenance).jpg
Sectioned view of an air-cooled single cylinder, with monobloc head and access plug above the side valve

The head gasket is the most highly stressed static seal in an engine, and was a source of considerable trouble in early years. The monobloc cylinder head forms both cylinder and head in one unit, thus averting the need for a seal.

Along with head gasket failure, one of the least reliable parts of the early petrol engine was the exhaust valve, which tended to fail by overheating. A monobloc head could provide good water cooling, thus reduced valve wear, as it could extend the water jacket uninterrupted around both head and cylinder. Engines with gaskets required a metal-to-metal contact face here, disrupting water flow.

The drawback to the monobloc head is that access to the inside of the combustion chamber (the upper volume of the cylinder) is difficult. Access through the cylinder bore is restricted for machining the valve seats, or for inserting angled valves. An even more serious restriction is de-coking and re-grinding valve seats, a regular task on older engines. Rather than removing the cylinder head from above, the mechanic must remove pistons, connecting rods and the crankshaft from beneath. [3] [4]

One solution to this for side-valve engines was to place a screwed plug directly above each valve, and to access the valves through this (illustrated). The tapered threads of the screwed plug provided a reliable seal. For low-powered engines this was a popular solution for some years, but it was difficult to cool this plug, as the water jacket didn't extend into the plug. As performance increased, it also became important to have better combustion chamber designs with less "dead space". One solution was to place the spark plug in the centre of this plug, which at least made use of the space. This placed the spark plug further from the combustion chamber, leading to long flame paths and slower ignition.

During World War I, development of the internal combustion engine greatly progressed. After the war, as civilian car production resumed, the monobloc cylinder head was required less frequently. Only high-performance cars such as the Leyland Eight of 1920 persisted with it. [5] Bentley and Bugatti [3] [6] were other racing marques who notably adhered to them, through the 1920s and into the 1930s, most famously being used in the purpose-built American Offenhauser straight-four racing engines, first designed and built in the 1930s.

Aircraft engines at this time were beginning to use high supercharging pressures, increasing the stress on their head gaskets. Engines such as the Rolls-Royce Buzzard used monobloc heads for reliability. [7]

The last engines to make widespread use of monobloc cylinder heads were large air-cooled aircraft radial engines, such as the Wasp Major. These have individual cylinder barrels, so access is less restricted than on an inline engine with a monobloc crankcase and cylinders, as most modern engines are. As they have high specific power and require great reliability, the advantages of the monobloc remained attractive.

General aviation engines such as Franklin, Continental, and Lycoming are still manufactured new [8] [9] [10] and continue to use monobloc individual cylinders, although Franklin uses a removable sleeve. A combination of materials are used in their construction, such as steel for the cylinder barrels and aluminum alloys for the cylinder heads to save weight. Common rebuilding techniques include chrome plating the inside of the cylinder barrels in a "cracked" finish that mimics the "cross-hatched" finish normally created by typical cylinder honing. Older engines operated on unleaded automotive gasoline as allowed by supplemental type certificates approved by the FAA may require more frequent machining replacement of valves and seats. Special tools are used to maintain valve seats in these cylinders. [11] Non-destructive testing should be performed to look for flaws that may have arisen during extreme use, engine damage from sudden propeller stoppage or extended engine operation at every overhaul or rebuild. [12]

Historically the difficulties of machining, and maintaining a monobloc cylinder head were and continue to be a severe drawback. As head gaskets became able to handle greater heat and pressure, the technique went out of use. It is almost unknown today, but has found a few niche uses, as the technique of monobloc cylinder heads was adopted by the Japanese model engine manufacturer Saito Seisakusho for their glow fueled and spark ignition model four-stroke engines for RC aircraft propulsion needs.

Monobloc cylinders also continue to be used on small 2 stroke-cycle engines for power equipment used to maintain lawns and gardens, such as string trimmers, tillers and leaf blowers. [13] [14]

Cylinder block

Early monobloc engine of 1919: All cylinders are cast together with the crankcase, cylinder head separate Cylinder block and head of sidevalve engine (Autocar Handbook, Ninth edition).jpg
Early monobloc engine of 1919: All cylinders are cast together with the crankcase, cylinder head separate
Non-monobloc engine of 1905: cylinders are cast in three pairs, but heads are monobloc style in each set of cylinders Wolseley 6-cylinder marine oil engine (Rankin Kennedy, Modern Engines, Vol V).jpg
Non-monobloc engine of 1905: cylinders are cast in three pairs, but heads are monobloc style in each set of cylinders
Non-monobloc engine of 1919: cylinders are cast in two blocks of three, but heads are monobloc style Six cylinder engine with three cylinder blocks (Autocar Handbook, Ninth edition).jpg
Non-monobloc engine of 1919: cylinders are cast in two blocks of three, but heads are monobloc style

Casting technology at the dawn of the internal combustion engine could reliably cast either large castings, or castings with complex internal cores to allow for water jackets, but not both simultaneously. Most early engines, particularly those with more than four cylinders, had their cylinders cast as pairs or triplets of cylinders, then bolted to a single crankcase.

As casting techniques improved, the entire cylinder block of four, six or even eight cylinders could be cast as one. This was a simpler construction, thus less expensive to manufacture, [15] and the communal water jacket permitted closer spacing between cylinders. This also improved the mechanical stiffness of the engine, against bending and the increasingly important torsional twist, as cylinder numbers and engine lengths increased. [16] In the context of aircraft engines, the non-monobloc precursor to monobloc cylinders was a construction where the cylinders (or at least their liners) were cast as individuals, and the outer water jacket was applied later from copper or steel sheet. [17] This complex construction was expensive, but lightweight, and so it was only widely used for aircraft.

V engines remained with a separate block casting for each bank. The complex ducting required for inlet manifolds between the banks were too complicated to cast otherwise. For economy, a few engines, such as the V12 Pierce-Arrow, were designed to use identical castings for each bank, left and right. [18] Some rare engines, such as the Lancia 22½° narrow-angle V12 of 1919, did use a single block casting for both banks. [19]

A 322 cu in (5.3 L) monobloc engine was used in 1936's Series 60. It was designed to be the company's next-generation powerplant at reduced cost from the 353 and Cadillac V16. The monobloc's cylinders and crankcase were cast as a single unit, [20] and it used hydraulic valve lifters for durability. This design allowed the creation of the mid-priced Series 60 line.

Modern cylinders, except for air-cooled engines and some V engines, are now universally cast as a single cylinder block, and modern heads are nearly always separate components.

Crankcase

Rover V8 engine, with both blocks and crankcase formed en bloc Stripped Rover V8 engine.JPG
Rover V8 engine, with both blocks and crankcase formed en bloc

As casting improved and cylinder blocks became a monobloc, it also became possible to cast both cylinders and crankcase as one unit. The main reason for this was to improve stiffness of the engine construction, reducing vibration and permitting higher speeds.

Most engines, except some V engines, are now a monobloc of crankcase and cylinder block.

Modern engines - Combined block, head and crankcase

Light-duty consumer-grade Honda GC-family small engines use a headless monobloc design where the cylinder head, block, and half the crankcase share the same casting, termed 'uniblock' by Honda. [21] One reason for this, apart from cost, is to produce an overall lower engine height. Being an air-cooled OHC design, this is possible thanks to current aluminum casting techniques and lack of complex hollow spaces for liquid cooling. The valves are vertical, so as to permit assembly in this confined space. On the other hand, performing basic repairs becomes so time-consuming that the engine can be considered disposable. Commercial-duty Honda GX-family engines (and their many popular knock-offs) have a more conventional design of a single crankcase and cylinder casting, with a separate cylinder head.

Honda produces many other head-block-crankcase monoblocs under a variety of different names, such as the GXV-series. They may all be externally identified by a gasket which bisects the crankcase on an approximately 45° angle.

Related Research Articles

<span class="mw-page-title-main">Cylinder head</span> Component of an internal combustion engine

In an internal combustion engine, the cylinder head sits above the cylinders and forms the roof of the combustion chamber. In sidevalve engines, the head is a simple sheet of metal; whereas in more modern overhead valve and overhead camshaft engines, the cylinder head is a more complicated block often containing inlet and exhaust passages, coolant passages, valves, camshafts, spark plugs and fuel injectors. Most straight engines have a single cylinder head shared by all of the cylinders and most V engines have two cylinder heads.

<span class="mw-page-title-main">Multi-valve</span> Type of car engine

In automotive engineering a multi-valve or multivalve engine is one where each cylinder has more than two valves. A multi-valve engine has better breathing and may be able to operate at higher revolutions per minute (RPM) than a two-valve engine, delivering more power.

<span class="mw-page-title-main">Ford flathead V8 engine</span> Reciprocating internal combustion engine

The Ford flathead V8 is a V8 engine with a flat cylinder head designed by the Ford Motor Company and built by Ford and various licensees. During the engine's first decade of production, when overhead-valve engines were used by only a small minority of makes, it was usually known simply as the Ford V‑8, and the first car model in which it was installed, the Model 18, was often called simply the "Ford V-8", after its new engine. Although the V8 configuration was not new when the Ford V8 was introduced in 1932, the latter was a market first in the respect that it made an 8-cylinder affordable and a V engine affordable to the emerging mass market consumer for the first time. It was the first independently designed and built V8 engine produced by Ford for mass production, and it ranks as one of the company's most important developments. A fascination with ever-more-powerful engines was perhaps the most salient aspect of the American car and truck market for a half century, from 1923 until 1973. The engine was intended to be used for big passenger cars and trucks; it was installed in such until 1953, making the engine's 21-year production run for the U.S. consumer market longer than the 19-year run of the Ford Model T engine for that market. The engine was on Ward's list of the 10 best engines of the 20th century. It was a staple of hot rodders in the 1950s, and it remains famous in the classic car hobbies even today, despite the huge variety of other popular V8s that followed.

<span class="mw-page-title-main">Engine block</span> Part of an internal combustion engine

In an internal combustion engine, the engine block is the structure which contains the cylinders and other components. In an early automotive engine, the engine block consisted of just the cylinder block, to which a separate crankcase was attached. Modern engine blocks typically have the crankcase integrated with the cylinder block as a single component. Engine blocks often also include elements such as coolant passages and oil galleries.

<span class="mw-page-title-main">Hydrolock</span> Type of hydraulic compression system failure

Hydrolock is an abnormal condition of any device which is designed to compress a gas by mechanically restraining it; most commonly the reciprocating internal combustion engine, the case this article refers to unless otherwise noted. Hydrolock occurs when a volume of liquid greater than the volume of the cylinder at its minimum enters the cylinder. Since liquids are nearly incompressible the piston cannot complete its travel; either the engine must stop rotating or a mechanical failure must occur.

<span class="mw-page-title-main">Wasserboxer</span> Reciprocating internal combustion engine

The Volkswagen wasserboxer is a four cylinder horizontally opposed pushrod overhead-valve (OHV) petrol engine developed by Volkswagen. The engine is water-cooled, and takes its name from the German: "wasserboxer" ("Water-boxer"); with "boxer" being another term for horizontally opposed engines. It was available in two displacements – either a 1.9-litre or a 2.1-litre; the 2.1-litre being a longer stroke version of the 1.9-litre, both variants sharing the same cylinder bore. This engine was unique to the Volkswagen Type 2 (T3), having never been used in any other vehicle. Volkswagen contracted Oettinger to develop a six-cylinder version of this engine. Volkswagen decided not to use it, but Oettinger sold a Volkswagen Type 2 (T3) equipped with this engine.

<span class="mw-page-title-main">Model engine</span>

A model engine is a small internal combustion engine typically used to power a radio-controlled aircraft, radio-controlled car, radio-controlled boat, free flight, control line aircraft, or ground-running tether car model.

<span class="mw-page-title-main">Continental XI-1430</span> American aircraft engine

The Continental XI-1430 Hyper engine was a liquid-cooled aircraft engine developed in the United States by a partnership between the US Army Air Corps and Continental Motors. It was the "official" result of the USAAC's hyper engine efforts that started in 1932, but never entered widespread production as it was not better than other available engines when it finally matured. In 1939, the I-1430-3 was designated as the engine to power the Curtiss XP-55, an extremely radical pusher-engine fighter design that would not reach production.

The Paxman Ventura is an internal combustion diesel engine for railway locomotives, built by Davey, Paxman & Co.

<span class="mw-page-title-main">T-head engine</span> Type of early internal combustion engine

A T-head engine is an early type of internal combustion engine that became obsolete after World War I. It is a sidevalve engine distinguished from the more common L-head by its valve placement. In T-head engines, the intake valves are located on one side of the engine block and the exhaust valves on the other. When viewed from the end of the crankshaft, especially in a cutaway view, the cylinder and combustion chamber resemble a 'T', leading to the name "T-head". In contrast, an L-head engine has all valves on the same side.

<span class="mw-page-title-main">Argus As I</span> 1910s German piston aircraft engine

The Argus As I was a four-cylinder, water-cooled, aircraft engine produced in Germany by Argus Motoren from 1911 until about 1913.

<span class="mw-page-title-main">Junk head</span>

A junk head is a form of piston engine cylinder head, where the head is formed by a dummy piston mounted inside the top of the cylinder. In most other engine designs, the cylinder head is mounted on top of the cylinder block. That form has also been termed a "poultice head".

<span class="mw-page-title-main">Lorraine Pétrel</span> 1930s French piston aircraft engine

The Lorraine 12H Pétrel was a French V-12 supercharged, geared piston aeroengine initially rated at 370 kW (500 hp), but later developed to give 640 kW (860 hp). It powered a variety of mostly French aircraft in the mid-1930s, several on an experimental basis.

<span class="mw-page-title-main">Isotta Fraschini Asso XI</span>

The Asso XI was a family of water-cooled, supercharged V12 piston aeroengines produced in the 1930s by Italian manufacturer Isotta Fraschini, and fitted on a number of aircraft types built by CANT, Caproni and others.

A long-bolt or through-bolt engine is an internal combustion piston engine where, following usual practice, the cylinder head is held down by bolts or studs. Conventionally the cylinder head is bolted to the cylinder block and the crankshaft main bearings are in turn bolted to the crankcase by separate bolts. In the long-bolt engine however, a single set of long bolts is used, spanning from the cylinder head right through to the crankshaft bearing caps.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<span class="mw-page-title-main">Argus 140/150 hp 4-cylinder</span> 1910s German piston aircraft engine

The Argus 140/150 hp aircraft engine from 1911, also known as Argus Type IV, was a four-cylinder, water cooled inline engine built by the German Argus Motoren company.

<span class="mw-page-title-main">Argus 70 hp</span>

The Argus 70 hp aircraft engine, aka Argus Type I from 1911 was a four-cylinder, water cooled inline engine built by the German Argus Motoren company. The engine also was license produced in France by Automobiles Rossel and sold in France under the brand names 'Aviatik' and 'Aviatic-Rossel' by Louis Clément, the local sales representative of the Automobil und Aviatik AG.

The Rapp 100 hp was a four-cylinder, SOHC valvetrain liquid-cooled inline aircraft engine built by Rapp Motorenwerke. The engine originated from Karl Rapp's earlier 90 hp four-cylinder that he had designed at the Flugwerk Deutschland GmbH for the 1912/13 Kaiserpreis aircraft engine contest.

<span class="mw-page-title-main">Argyll aircraft engine</span> 1914 prototype Burt-McCollum sleeve valve aircraft engine

The Argyll aircraft engine was the first four stroke sleeve valve engine built for aircraft use. Manufactured by the Scottish car maker Argylls in 1914, the engine was a 120 hp straight-six design utilising Burt-McCollum single sleeve valves which eliminated the need for poppet valves. The Argyll aircraft engine was exhibited to the British War Office in 1914 but was not put into production. Development of Burt-McCollum single sleeve valves continued after World War I with the type eventually seeing widespread use in British aero engines starting with the Bristol Perseus in 1932.

References

  1. Kennedy, Rankin (1905). The De Dion-Bouton Engine and Cars. The Book of Modern Engines and Power Generators (1912 ed.). London: Caxton. pp. 78–89.
  2. Kennedy, pp. 163-167
  3. 1 2 Conway, H.G. (1984). "Type 41 Royale". Bugatti. Great Marques. Octopus. p. 64. ISBN   0-7064-2046-2.
  4. Stein, Ralph (1973). The World of the Automobile. Hamlyn. pp. 172–173. ISBN   0-600-39305-4.
  5. Posthumus, Cyril (1973). Vintage Cars . Hamlyn. pp.  59. ISBN   0-600-39131-0.
  6. Stein, Ralph (1979). The Greatest Cars. p. 75. ISBN   0671251953.
  7. Ludvigsen, Karl (2005). The V12 Engine. Haynes Publishing. p. 99. ISBN   1-84425-004-0.
  8. "9057". lycoming.com. Retrieved 2020-06-20.
  9. "Franklin Aircraft Engines - Your Source for Franklin Engines, Engine Conversions, Accessories and Components". www.franklinengines.com. Retrieved 2020-06-20.
  10. "200". www.continental.aero. Retrieved 2020-06-20.
  11. "MIRA - VGX-21 Aerokit for Lycoming and continental aero engines". www.miratool.ch. Retrieved 2020-06-20.
  12. Federal Aviation Administration (10 October 2012). "Acceptable Methods, Techniques, and Practices – Aircraft Inspection and Repair" (PDF). Retrieved 20 June 2020.
  13. "587597301 Cylinder - Chrome". eEeplacementParts.com.
  14. "(#3A) Original Mantis Tiller Parts # 10101145230 Cylinder". Alamia.
  15. Editorial staff (8 July 1909). "Editorial column "Revival in block type of motor"". The Automobile.
  16. Beaumont, R. A. (c. 1948). "11. Aero-engine design and Construction". Advantages of Monobloc. London: Odhams. p. 227.{{cite book}}: |work= ignored (help)
  17. Beaumont, p. 231
  18. Ludvigsen, V12 Engine, p. 120
  19. Ludvigsen, V12 Engine, p. 50-53
  20. Cadillac LaSalle Club of Australia, Peter's 1939 La Salle
  21. "Honda General Purpose Engines: GC Series - Single Cylinder". Archived from the original on 2010-11-27. Includes sectioned drawings