Model engine

Last updated
An old Cox Golden Bee 0.049 cubic inch (0.8 cubic cm.) reed valve engine disassembled. The weight is two and a quarter ounces with the propeller and large fuel tank, but without fuel. Old Cox Babe Bee engine dissasembled.JPG
An old Cox Golden Bee 0.049 cubic inch (0.8 cubic cm.) reed valve engine disassembled. The weight is two and a quarter ounces with the propeller and large fuel tank, but without fuel.
The same Cox Golden Bee 0.049 assembled. The left rotating propeller and horizontal cylinder contribute to keeping the control lines tight. Cox reed valve assembled.JPG
The same Cox Golden Bee 0.049 assembled. The left rotating propeller and horizontal cylinder contribute to keeping the control lines tight.

A model engine is a small internal combustion engine [1] typically used to power a radio-controlled aircraft, radio-controlled car, radio-controlled boat, free flight, control line aircraft, or ground-running tether car model.

Contents

Because of the square–cube law, the behaviour of many engines does not always scale up or down at the same rate as the machine's size; usually at best causing a dramatic loss of power or efficiency, and at worst causing them not to work at all. Methanol and nitromethane are common fuels.

Overview

The fully functional, albeit small, engines vary from the most common single-cylinder two-stroke to the exotic single and multiple-cylinder four-stroke, the latter taking shape in boxer, v-twin, inline and radial form, a few Wankel engine designs are also used. Most model engines run on a blend of methanol, nitromethane, and lubricant (either castor or synthetic oil).

Two-stroke model engines, most often designed since 1970 with Schnuerle porting for best performance, range in typical size from .12 cubic inches (2 cubic centimeters) to 1.2 ci (19.6 cc) and generate between .5 horsepower (370 watts) to 5 hp (3.7 kW), can get as small as .010 ci (.16 cc) and as large as 3-4 ci (49–66 cc). [2] Four-stroke model engines have been made in sizes as small as 0.20 in3 (3.3 cc) for the smallest single-cylinder models, all the way up to 3.05 in3 (50 cc) for the largest size for single-cylinder units, with twin- and multi-cylinder engines on the market being as small as 10 cc for opposed-cylinder twins, while going somewhat larger in size than 50 cc, and even upwards to well above 200 cc for some model boxer opposed-piston, inline and radial engines. While the methanol and nitromethane blended "glow fuel" engines are the most common, many larger (especially above 15 cc/0.90 ci displacement) model engines, both two-stroke and a growing number of four-stroke examples are spark ignition, and are primarily fueled with gasoline — with some examples of both two and four-stroke glow plug-designed methanol aeromodeling engines capable, with aftermarket upgrades, to having battery-powered, electronically controlled spark ignition systems replacing the glow plugs normally used. Model engines refitted in such a manner often run more efficiently on methanol-based glow plug engine fuels, often with the ability to exclude the use of nitromethane altogether in their fuel formulas.

This article concerns itself with the methanol engines; gasoline-powered model engines are similar to those built for use in string trimmers, chainsaws, and other yard equipment, unless they happen to be purpose-built for aeromodeling use, being especially true for four-stroke gasoline-fueled model engines. Such engines usually use a fuel that contains a small percentage of motor oil as a two-stroke engine uses for lubrication purposes, as most model four-stroke engines — be they glow plug or spark ignition — have no built-in reservoir for motor oil in their crankcase or engine block design.

The majority of model engines have used, and continue to use, the two-stroke cycle principle to avoid needing valves in the combustion chamber, but a growing number of model engines use the four-stroke cycle design instead. Both reed valve and rotary valve-type two-strokes are common, with four-stroke model engines using either conventional poppet valve, and rotary valve formats for induction and exhaust.

The engine shown to the right has its carburetor in the center of the zinc alloy casting to the left. (It uses a flow restriction, like the choke on an old car engine, because the venturi effect is not effective on such a small scale.) The valve reed, cross shaped above its retainer spring, is still beryllium copper alloy, in this old engine. The glow plug is built into the cylinder head. Large production volume makes it possible to use a machined cylinder and an extruded crank case (cut away by hand in the example shown). These Cox Bee reed valve engines are notable for their low cost and ability to survive crashes. The components of the engine shown come from several different engines.

Comparison of engines

Images of a glowplug engine and a "diesel" engine are shown below for comparison. The most obvious external difference is seen on top of the cylinder head. The glowplug engine's glow plug has a pinlike terminal for its center contact, which is an electrical connector for the glowplug. The "diesel" engine has a T-bar which is used for adjusting the compression. The cylindrical object behind the glowplug engine is an exhaust silencer or muffler.

Glowplug engines

Glow plugs are used for starting as well as continuing the power cycle. The glow plug consists of a durable, mostly platinum, helically wound wire filament, within a cylindrical pocket in the plug body, exposed to the combustion chamber. A small direct current voltage (around 1.5 volts) is applied to the glow plug, the engine is then started, and the voltage is removed. The burning of the fuel/air mixture in a glow-plug model engine, which requires methanol for the glow plug to work in the first place, and sometimes with the use of nitromethane for greater power output and steadier idle, occurs due to the catalytic reaction of the methanol vapor to the presence of the platinum in the filament, thus causing the ignition. This keeps the plug's filament glowing hot, and allows it to ignite the next charge.

Since the ignition timing is not controlled electrically, as in a spark ignition engine or by fuel injection, as in an ordinary diesel, it must be adjusted by the richness of the mixture, the ratio of nitromethane to methanol, the compression ratio, the cooling of the cylinder head, the type of glow plug, etc. A richer mixture will tend to cool the filament and so retard ignition, slowing the engine, and a rich mixture also eases starting. After starting the engine can easily be leaned (by adjusting a needle valve in the spraybar) to obtain maximum power. Glowplug engines are also known as nitro engines. Nitro engines require a 1.5 volt ignitor to light the glow plug in the heat sink. Once primed, pulling the starter with the ignitor in will start the engine.

Diesel engines

Diesel engines are an alternative to methanol glow plug engines. These "diesels" run on a mixture of kerosene, ether, castor oil or vegetable oil, and Amsoil cetane or amyl nitrate booster. Despite their name, their use of compression ignition, and the use of a kerosene fuel that is similar to diesel, model diesels share very little with full-size diesel engines.

Full-size diesel engines, such as those found in a truck, are fuel injected and either two-stroke or four-stroke. They use compression ignition to ignite the mixture: the compression within the cylinder heats the inlet charge sufficiently to cause ignition, without requiring an applied ignition source. A fundamental feature of such engines, unlike petrol (gasoline) engines, is that they draw in air alone and the fuel is only mixed by being injected into the combustion chamber separately. Model diesel engines are instead a carbureted two-stroke using the crankcase for compression. The carburetor supplies a mixture of fuel and air into the engine, with the proportions kept fairly constant and their total volume throttled to control the engine power.

Apart from sharing the diesel's use of compression ignition, their construction has more in common with a small two-stroke motorcycle or lawnmower engine. In addition to this, model diesels have variable compression ratios. This variable compression is achieved by a "contra-piston", at the top of the cylinder, which can be adjusted by a screwed "T-bar". The swept volume of the engine remains the same, but as the volume of the combustion chamber at top dead centre is changed by adjusting the contra-piston, the compression ratio (swept volume + combustion chamber / combustion chamber) changes accordingly.

Model diesels are found to produce more torque than glow engines of the same displacement, and are thought to get better fuel efficiency, because the same power is produced at a lower rpm, and in a smaller displacement engine. However, the specific power may not be significantly superior to a glow engine, due to the heavier construction needed to assure that the engine can withstand the much higher compression ratio, sometimes reaching 30:1. Diesels also run significantly quieter, due to the more rapid combustion, unlike two-stroke glow engines, in which combustion may still be occurring when the exhaust ports are uncovered, causing a significant amount of noise.

Recent developments in model engineering have produced true diesel model engines, with a traditional injector and injector pump, and these engines operate in the same way as a large diesel engine.

See also

Makers

Related Research Articles

<span class="mw-page-title-main">Compression ratio</span> Ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values.

<span class="mw-page-title-main">Reciprocating engine</span> Engine utilising one or more reciprocating pistons

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the Stirling engine for niche applications. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston in one revolution of the crankshaft. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.

In spark-ignition internal combustion engines, knocking occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but when one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel–air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. The shock wave creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential to completely destructive.

Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air–fuel ratio may be as lean as 65:1. The air / fuel ratio needed to stoichiometrically combust gasoline, by contrast, is 14.64:1. The excess of air in a lean-burn engine emits far less hydrocarbons. High air–fuel ratios can also be used to reduce losses caused by other engine power management systems such as throttling losses.

Dieseling or engine run-on is a condition that can occur in spark-plug-ignited, gasoline-powered internal combustion engines, whereby the engine keeps running for a short period after being turned off, drawing fuel through the carburetor, into the engine and igniting it without a spark.

Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine.

In the context of an internal combustion engine, the term stroke has the following related meanings:

A nitro engine generally refers to an engine powered with a fuel that contains some portion of nitromethane mixed with methanol. Nitromethane is a highly combustible substance that is generally only used in very specifically designed engines found in Top Fuel drag racing and in miniature internal combustion engines in radio control, control line and free flight model aircraft.

A spark-ignition engine is an internal combustion engine, generally a petrol engine, where the combustion process of the air-fuel mixture is ignited by a spark from a spark plug. This is in contrast to compression-ignition engines, typically diesel engines, where the heat generated from compression together with the injection of fuel is enough to initiate the combustion process, without needing any external spark.

<span class="mw-page-title-main">Hot-bulb engine</span> Internal combustion engine

The hot-bulb engine, also known as a semi-diesel or Akroyd engine, is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

A six-stroke engine is one of several alternative internal combustion engine designs that attempt to improve on traditional two-stroke and four-stroke engines. Claimed advantages may include increased fuel efficiency, reduced mechanical complexity, and/or reduced emissions. These engines can be divided into two groups based on the number of pistons that contribute to the six strokes.

Glow fuel is a fuel source used in model engines – generally the same or similar fuels can be used in model airplanes, helicopters, cars and boats. Glow fuel can be burned by very simple two-stroke engines or by more complicated four-stroke engines, and these engines can provide impressive amounts of power for their very small size. Glow fuel is primarily for two-stroke engines with the need for oil mixed in the fuel and limited exhaust and fuel/air between cycles. Top Fuel race cars with 4-stroke engines may also use glow fuel, but in this case it does not contain appreciable oil.

<span class="mw-page-title-main">Glow plug</span> Heating element used to aid in starting diesel engines

In a diesel engine, a glow plug is a heating device used to aid starting of the engine in cold weather. This device is a pencil-shaped piece of metal with an electric heating element at the tip.

<span class="mw-page-title-main">Glow plug (model engine)</span>

A glow plug engine, or glow engine, is a type of small internal combustion engine typically used in model aircraft, model cars and similar applications. The ignition is accomplished by a combination of heating from compression, heating from a glow plug and the catalytic effect of the platinum within the glow plug on the methanol within the fuel.

<span class="mw-page-title-main">Carbureted compression ignition model engine</span> Type of carbureted engine

A carbureted compression ignition model engine, popularly known as a model diesel engine, is a simple compression ignition engine made for model propulsion, usually model aircraft but also model boats. These are quite similar to the typical glow-plug engine that runs on a mixture of methanol-based fuels with a hot wire filament to provide ignition. Despite their name, their use of compression ignition, and the use of a kerosene fuel that is similar to diesel, model diesels share very little with full-size diesel engines.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References

  1. "Model Engineers—Internal Combustion Engines". craftsmanshipmuseum.com. Retrieved 2024-08-05.
  2. "AdriansModelAeroEngines.com :: Commercial British fuel history". www.adriansmodelaeroengines.com. Retrieved 2024-08-05.