This article needs additional citations for verification .(October 2014) |
Reed valves are a type of check valve which restrict the flow of fluids to a single direction, opening and closing under changing pressure on each face. Modern versions often consist of flexible metal or composite materials (fiberglass or carbon fiber).
Reed valves, normally a leather flap covering a hole, are amongst the earliest form of automatic flow control for liquids and gases. They have been used for thousands of years in water pumps and for hundreds of years in bellows for high-temperature forges and musical instruments such as church organs and accordions. In nature, heart valves operate in a somewhat similar fashion.
Reed valves are used in some reciprocating compressor designs, and in the pumping element of some musical instruments, large and small.
Reed valves are commonly used in high-performance versions of the two-stroke engine, where they control the fuel-air mixture admitted to the cylinder. As the piston rises in the cylinder a vacuum is created in the crankcase beneath the piston. The resulting pressure differential opens the valve and the fuel-air mixture flows into the crankcase. As the piston descends, it raises the crankcase pressure causing the valve to close to retain the mixture and pressurize it for its eventual transfer through to the combustion chamber. [1] The Swedish motorcycle company Husqvarna produced a two-stroke, 500 cc displacement single cylinder engine with a reed-valve controlled intake, one of the biggest in using this arrangement. Reed valves in two-stroke engines have been placed in the intake ports and also in controlling the intake to the crankshaft space.
Composite materials are preferred in racing engines, especially in kart racing, because the stiffness of the petals can be easily tuned and they are relatively safe in failure. High-speed impact takes its toll on all reed valves, with metal valves suffering in fatigue. The physical inertia of reed valves means that they are not as entirely precise in action as rotary valves, a rotary valve engine may run better than a reed valve engine at a small rpm range but the reed valve engine often runs better over a wider rpm range. More sophisticated designs partly address this by creating multi-stage reeds with smaller, more responsive reeds within larger ones that provide more volume later in the cycle. Nevertheless, current technology favors reed valves almost to the exclusion of rotary valves due to their simplicity and low implementation costs and less rotational mass.
Yanmar Diesel, a Japanese engine maker, was pioneer in introducing reed valves for flow control at intake ports of its small Wankel engines, showing an improvement in torque and performances at low rpm and under partial load of the engine. Toyota discovered the benefits of injecting fresh air into the Wankel RCE exhaust port, and also used a reed valve in prototypes where they tested the SCRE concept (Stratified Charge Rotary Engine). However, this kind of intake port arrangement never reached the production line for automobile size RCEs. According to David W. Garside, who developed the Norton line of Wankel-powered motorcycles, data from other RCE producers pointed that reed valves do improve performances at low rpm and under partial load, but reduce the high speed power output of the engine, a feature considered inconvenient for motorcycle engines.
Reed valves are used in the cheap but inefficient pulse jet engine, such as the one used by the Argus As 014 engine in the German V-1 (flying bomb). The valves at the front of the cylindrical engine are opened by the low pressure in the combustion chamber caused by the resonance of the air column in the engine, fuel is squirted into the combustion chamber and ignited by the hot combustion gases of the previous cycle. Once the charge has expanded and mostly left the engine, pressure inside drops again to below-atmospheric values and the reed valve allows fresh air to enter and the cycle be repeated. Some ram-air pressure due to forward motion helps scavenging and filling the combustion chamber with the new, fresh air charge, thus improving the power of the engine at higher speeds.
Reed valves are designed considering the pressure gradient and mass flow. [2] The pressure gradient is used to evaluate the valve lift during open condition; the lift and overall component geometry (considering also a pressure loss coefficient) are then used to calculate the mass flow. For high speed applications (compressors and engines) the dynamic response has to be considered. A simple approach consists in the evaluation of first eigenvalue that is compared with exciting frequency. Design of reed valves can be refined using simulations. The dynamic of petals [3] can be studied neglecting the coupling between fluid and structure: in this case the evolution of the structural part are simulated using lumped parameters models or FEM models, discharge coefficients at various valve lift are evaluated with experiments or CFD simulations. The study of the complete system needs an integrated Fluid-structure interaction model.
A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder.
The Wankel engine is a type of internal combustion engine using an eccentric rotary design to convert pressure into rotating motion. The concept was invented and proven by German engineer Felix Wankel, and the commercially feasible engine designed by German engineer Hanns-Dieter Paschke. The Wankel engine's rotor, which creates the turning motion, is similar in shape to a Reuleaux triangle, with the sides having less curvature. The rotor spins inside a figure-eight-like epitrochoidal housing, around a fixed toothed gearing. The midpoint of the rotor moves in a circle around the output shaft, spinning the shaft via a cam.
A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.
In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust waste back to the engine cylinders. The exhaust waste displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.
A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.
A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:
The Monosoupape, was a rotary engine design first introduced in 1913 by Gnome Engine Company. It used a clever arrangement of internal transfer ports and a single pushrod-operated exhaust valve to replace the many moving parts found on more conventional rotary engines, and made the Monosoupape engines some of the most reliable of the era. British aircraft designer Thomas Sopwith described the Monosoupape as "one of the greatest single advances in aviation".
A rotary valve is a type of valve in which the rotation of a passage or passages in a transverse plug regulates the flow of liquid or gas through the attached pipes. The common stopcock is the simplest form of rotary valve. Rotary valves have been applied in numerous applications, including:
In automotive engineering, an inlet manifold or intake manifold is the part of an engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.
Gasoline direct injection (GDI), also known as petrol direct injection (PDI), is a mixture formation system for internal combustion engines that run on gasoline (petrol), where fuel is injected into the combustion chamber. This is distinct from manifold injection systems, which inject fuel into the intake manifold.
The two-stroke power valve system is an improvement to a conventional two-stroke engine that gives a high power output over a wider RPM range.
Cylinder head porting refers to the process of modifying the intake and exhaust ports of an internal combustion engine to improve their air flow. Cylinder heads, as manufactured, are usually suboptimal for racing applications due to being designed for maximum durability. Ports can be modified for maximum power, minimum fuel consumption, or a combination of the two, and the power delivery characteristics can be changed to suit a particular application.
A leaf valve, also known as a reed valve, is a type of check valve that only allows fluid to flow in a single direction. These valves use thin pieces of metal, fiberglass, or carbon fiber, known as reeds, leaves, or petals, to form a barrier between two chambers. When air or fuel passes through the reeds, the flap opens and allows the fluid to enter the chamber. The reeds close when the flow stops, preventing backflow.
The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.
A model engine is a small internal combustion engine typically used to power a radio-controlled aircraft, radio-controlled car, radio-controlled boat, free flight, control line aircraft, or ground-running tether car model.
Scavenging is the process of replacing the exhaust gas in a cylinder of an internal combustion engine with the fresh air/fuel mixture for the next cycle. If scavenging is incomplete, the remaining exhaust gases can cause improper combustion for the next cycle, leading to reduced power output.
A plenum chamber is a pressurised housing containing a fluid at positive pressure. One of its functions is to equalise pressure for more even distribution, compensating for irregular supply or demand. It is typically relatively large in volume and thus has relatively low velocity compared to the system's other components. In wind tunnels, rockets, and many flow applications, it is a chamber upstream on the fluid flow where the fluid initially resides. It can also work as an acoustic silencer.
Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
The Suzuki A100 is a Japanese motorcycle from the Suzuki Motor Corporation with production starting in 1966.Similar models were produced by Yamaha and Kawasaki with the YB100 & KH100 models, also with a single-cylinder two-stroke engine and rotary valve being examples.