Carbureted compression ignition model engine

Last updated
Miniature two-stroke "diesel engine". Note the T-bar on top for adjusting the compression Miniature two-stroke diesel engine 1960.JPG
Miniature two-stroke "diesel engine". Note the T-bar on top for adjusting the compression

A carbureted compression ignition model engine, popularly known as a model diesel engine, is a simple compression ignition engine made for model propulsion, usually model aircraft but also model boats. These are quite similar to the typical glow-plug engine that runs on a mixture of methanol-based fuels with a hot wire filament to provide ignition. Despite their name, their use of compression ignition, and the use of a kerosene fuel that is similar to diesel, model diesels share very little with full-size diesel engines.

Contents

Comparison with full-size engines

Full-size diesel engines, such as those found in a truck, are fuel injected and either two-stroke or four-stroke. They use compression ignition to ignite the mixture: the compression within the cylinder heats the inlet charge sufficiently to cause ignition, without requiring any external ignition source. A fundamental feature of such engines, unlike petrol (gasoline) engines, is that they draw in air alone and the fuel is only mixed by being injected into the combustion chamber separately. Model diesel engines are instead a carbureted two-stroke using the crankcase for charge-air compression. The carburetor supplies a mixture of fuel and air into the engine, with the proportions kept fairly constant and their total volume throttled to control the engine power. Apart from sharing the diesel's use of compression ignition, their construction has more in common with a small two-stroke motorcycle or lawnmower engine.

Variable compression

Model diesels have variable compression ratios. This variable compression is achieved by a "contra-piston," at the top of the cylinder, which can be adjusted by a screwed "T-bar". The swept volume of the engine remains the same, but as the volume of the combustion chamber at top dead center is changed by adjusting the contra-piston, the compression ratio (swept volume + combustion chamber / combustion chamber) changes accordingly. There also exist model diesels with fixed compression heads. A few examples are the British 5 cc OWAT or the American DRONE. These engines have a fixed compression ratio, but the compression can be altered slightly with the use of more or less lubrication oil in the fuel. Also the engine's load affects the compression and ignition timing. Larger propellers give a longer combustion time and so higher compression. Smaller propellers reduce the load, and therefore the compression pressure build up, which changes the ignition timing to earlier.

Advantages

Model diesels are found to produce more torque than glow engines of the same displacement, and are thought to get better fuel efficiency, because the same power is produced at lower rpm, and in a smaller displacement engine. However, the specific power may not be significantly superior to a glow engine, due to the heavier construction needed to assure that the engine can withstand the much higher compression ratio, sometimes as high as 30:1. Diesels also run significantly quieter, due to the more rapid combustion, unlike glow engines, in which combustion may still be occurring when the exhaust ports are uncovered, causing a significant amount of noise.

Disadvantages

Compared to glow plug engines, model diesels are more difficult to throttle over a wide range of powers, making them less suitable for radio-controlled models than either two or four stroke glow-plug engines although this difference is claimed to be less noticeable with the use of modern schnuerle-ported engines.

Fuel

These "diesels" run on a mixture of kerosene, ethanol, ether, castor oil or vegetable oil, and cetane or amyl nitrite booster. The fuel used contains Diethyl ether, which is highly volatile and has an extremely low flash point, combined with kerosene and a lubricant plus a very small proportion (typically 2%) of ignition improver such as Amyl nitrite or preferably Isopropyl nitrate nowadays.

Starting

The engine is started by reducing the compression and setting the spray bar mixture rich with the adjustable needle valve, gradually increasing the compression while cranking the engine. The compression is increased until the engine starts running. The mixture can then be leaned out and the compression increased. Compared to glow plug engines, model diesel engines exhibit much higher fuel economy, thus increasing endurance for the amount of fuel carried. They also exhibit higher torque, enabling the turning of a larger or higher pitched propeller at lower speed, and reducing compression will compensate for the earlier ignition at this lower speed. Since the combustion occurs well before the exhaust port is uncovered, these engines are also considerably quieter (when unmuffled) than glow-plug engines of similar displacement.

See also

Related Research Articles

<span class="mw-page-title-main">Compression ratio</span> Ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values.

<span class="mw-page-title-main">Diesel cycle</span> Engine combustion process

The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to igniting the fuel-air mixture with a spark plug as in the Otto cycle (four-stroke/petrol) engine. Diesel engines are used in aircraft, automobiles, power generation, diesel–electric locomotives, and both surface ships and submarines.

<span class="mw-page-title-main">Miller cycle</span> Thermodynamic cycle

In engineering, the Miller cycle is a thermodynamic cycle used in a type of internal combustion engine. The Miller cycle was patented by Ralph Miller, an American engineer, U.S. Patent 2,817,322 dated Dec 24, 1957. The engine may be two- or four-stroke and may be run on diesel fuel, gases, or dual fuel. It uses a supercharger to offset the performance loss of the Atkinson cycle.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.

Pre-ignition in a spark-ignition engine is a technically different phenomenon from engine knocking, and describes the event wherein the air/fuel mixture in the cylinder ignites before the spark plug fires. Pre-ignition is initiated by an ignition source other than the spark, such as hot spots in the combustion chamber, a spark plug that runs too hot for the application, or carbonaceous deposits in the combustion chamber heated to incandescence by previous engine combustion events.

Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air–fuel ratio may be as lean as 65:1. The air / fuel ratio needed to stoichiometrically combust gasoline, by contrast, is 14.64:1. The excess of air in a lean-burn engine emits far less hydrocarbons. High air–fuel ratios can also be used to reduce losses caused by other engine power management systems such as throttling losses.

Dieseling or engine run-on is a condition that can occur in spark-plug-ignited, gasoline-powered internal combustion engines, whereby the engine keeps running for a short period after being turned off, drawing fuel through the carburetor, into the engine and igniting it without a spark.

Homogeneous Charge Compression Ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine.

Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase fuel efficiency while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available vehicle that uses a variable compression ratio engine.

<span class="mw-page-title-main">Hot-bulb engine</span> Internal combustion engine

The hot-bulb engine, also known as a semi-diesel, is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

<span class="mw-page-title-main">Ignition timing</span> Timing of the release of a spark in a combustion engine

In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

<span class="mw-page-title-main">Model engine</span>

A model engine is a small internal combustion engine typically used to power a radio-controlled aircraft, radio-controlled car, radio-controlled boat, free flight, control line aircraft, or ground-running tether car model.

Glow fuel is a fuel source used in model engines – generally the same or similar fuels can be used in model airplanes, helicopters, cars and boats. Glow fuel can be burned by very simple two-stroke engines or by more complicated four-stroke engines, and these engines can provide impressive amounts of power for their very small size. Glow fuel is primarily for two-stroke engines with the need for oil mixed in the fuel and limited exhaust and fuel/air between cycles. Top Fuel race cars with 4-stroke engines may also use glow fuel, but in this case it does not contain appreciable oil.

<span class="mw-page-title-main">Glow plug (model engine)</span>

A glow plug engine, or glow engine, is a type of small internal combustion engine typically used in model aircraft, model cars and similar applications. The ignition is accomplished by a combination of heating from compression, heating from a glow plug and the catalytic effect of the platinum within the glow plug on the methanol within the fuel.

Diesel engine runaway is an occurrence in diesel engines, in which the engine draws extra fuel from an unintended source and overspeeds at higher and higher RPM, producing up to ten times the engine's rated output until destroyed by mechanical failure or bearing seizure due to a lack of lubrication. Hot-bulb engines and jet engines can also run away via the same process.

<span class="mw-page-title-main">Hesselman engine</span>

The Hesselman engine is a hybrid between a petrol engine and a diesel engine. It was designed and introduced in 1925 by Swedish engineer Jonas Hesselman.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References