An engine control unit (ECU), also called an engine control module (ECM), [1] is a device which controls multiple systems of an internal combustion engine in a single unit. Systems commonly controlled by an ECU include the fuel injection and ignition systems.
The earliest ECUs (used by aircraft engines in the late 1930s) were mechanical-hydraulic units; however, most 21st-century ECUs function by digital electronics.
The main functions of the ECU are typically:
The sensors used by the ECU include: [2]
Other functions include:
In a camless piston engine (an experimental design not currently used in any production vehicles), the ECU has continuous control of when each of the intake and exhaust valves are opened and by how much. [3] [4]
One of the earliest attempts to use such a unitized and automated device to manage multiple engine control functions simultaneously was the created by BMW in 1939 Kommandogerät system used by the BMW 801 14-cylinder radial engine which powered the Focke-Wulf Fw 190 V5 fighter aircraft. [5] This device replaced the 6 controls used to initiate hard acceleration with one control, however the system could cause surging and stalling problems.[ citation needed ]
In the early 1970s, the Japanese electronics industry began producing integrated circuits and microcontrollers used for controlling engines. [6] The Ford EEC (Electronic Engine Control) system, which utilized the Toshiba TLCS-12 microprocessor, went into mass production in 1975. [7]
The first Bosch engine management system was the Motronic 1.0, which was introduced in the 1979 BMW 7 Series (E23) [8] This system was based on the existing Bosch Jetronic fuel injection system, to which control of the ignition system was added. [9]
In 1981, a Delco Electronics ECU was used by several Chevrolet and Buick engines to control their fuel system (a closed-loop carburetor) and ignition system. [10] By 1988, Delco Electronics was the leading producer of engine management systems, producing over 28,000 ECUs per day. [11]
Such systems are used for many internal combustion engines in other applications. In aeronautical applications, the systems are known as "FADECs" (Full Authority Digital Engine Controls). This kind of electronic control is less common in piston-engined light fixed-wing aircraft and helicopters than in automobiles. This is due to the common configuration of a carbureted engine with a magneto ignition system that does not require electrical power generated by an alternator to run, which is considered a safety advantage. [12]
Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of an injector. This article focuses on fuel injection in reciprocating piston and Wankel rotary engines.
Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.
A W8 engine is an eight-cylinder piston engine with four banks of two cylinders each, arranged in a W configuration.
Jetronic is a trade name of a manifold injection technology for automotive petrol engines, developed and marketed by Robert Bosch GmbH from the 1960s onwards. Bosch licensed the concept to many automobile manufacturers. There are several variations of the technology offering technological development and refinement.
The manifold absolute pressure sensor is one of the sensors used in an internal combustion engine's electronic control system.
Motronic is the trade name given to a range of digital engine control units developed by Robert Bosch GmbH which combined control of fuel injection and ignition in a single unit. By controlling both major systems in a single unit, many aspects of the engine's characteristics can be improved.
A throttle is a mechanism by which fluid flow is managed by constriction or obstruction.
In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.
Renix was a joint venture by Renault and Bendix that designed and manufactured automobile electronic ignitions, fuel injection systems, electronic automatic transmission controls, and various engine sensors. Major applications included various Renault and Volvo vehicles. The name became synonymous in the U.S. with the computer and fuel injection system used on the AMC/Jeep 2.5 L I4 and 4.0 L I6 engines.
Digifant is an Engine Management System operated by an Engine Control Unit that actuates outputs, such as fuel injection and ignition systems, using information derived from sensor inputs, such as engine speed, exhaust oxygen and intake air flow. Digifant was designed by Volkswagen Group, in cooperation with Robert Bosch GmbH.
Trionic T5.5 is an engine management system in the Saab Trionic range. It controls ignition, fuel injection and turbo boost pressure. The system was introduced in the 1993 Saab 9000 2.3 Turbo with B234L and B234R engine.
Electronic Diesel Control is a diesel engine fuel injection control system for the precise metering and delivery of fuel into the combustion chamber of modern diesel engines used in trucks and cars.
The VR5 engines are a family of petroleum fuelled Internal combustion engines developed by the Volkswagen Group and produced from 1997 to 2006. They are derived from the VR6 engine family, also developed by Volkswagen, but with one fewer cylinders. The VR5 is highly compact, thanks to the narrower angle of 15° and a displacement of 2,324 cc. The VR5 was the first production block to use five cylinders in a VR design with a 15-degree angle.
Automotive electronics are electronic systems used in vehicles, including engine management, ignition, radio, carputers, telematics, in-car entertainment systems, and others. Ignition, engine and transmission electronics are also found in trucks, motorcycles, off-road vehicles, and other internal combustion powered machinery such as forklifts, tractors and excavators. Related elements for control of relevant electrical systems are also found on hybrid vehicles and electric cars.
The Ford EEC or Electronic Engine Control is a series of ECU that was designed and built by Ford Motor Company. The first system, EEC I, used processors and components developed by Toshiba in 1973. It began production in 1974, and went into mass production in 1975. It subsequently went through several model iterations.
The Lucas 14CUX is an automotive electronic fuel injection system developed by Lucas Industries and fitted to the Rover V8 engine in Land Rover vehicles between 1990 and 1995. The system was also paired with the Rover V8 by a number of low-volume manufacturers such as TVR, Marcos, Ginetta, and Morgan.
Manifold injection is a mixture formation system for internal combustion engines with external mixture formation. It is commonly used in engines with spark ignition that use petrol as fuel, such as the Otto engine, and the Wankel engine. In a manifold-injected engine, the fuel is injected into the intake manifold, where it begins forming a combustible air-fuel mixture with the air. As soon as the intake valve opens, the piston starts sucking in the still forming mixture. Usually, this mixture is relatively homogeneous, and, at least in production engines for passenger cars, approximately stoichiometric; this means that there is an even distribution of fuel and air across the combustion chamber, and enough, but not more air present than what is required for the fuel's complete combustion. The injection timing and measuring of the fuel amount can be controlled either mechanically, or electronically. Since the 1970s and 1980s, manifold injection has been replacing carburettors in passenger cars. However, since the late 1990s, car manufacturers have started using petrol direct injection, which caused a decline in manifold injection installation in newly produced cars.
The Yamaha OX66 is a naturally aspirated V6 racing engine developed and built by Yamaha in the 1980s.