Crankshaft position sensor

Last updated
Typical inductive crankshaft position sensor Crankshaft sensor.png
Typical inductive crankshaft position sensor

A crank sensor (CKP) [1] [2] [3] is an electronic device used in an internal combustion engine, both petrol and diesel, to monitor the position or rotational speed of the crankshaft. This information is used by engine management systems to control the fuel injection or the ignition system timing and other engine parameters. Before electronic crank sensors were available, the distributor would have to be manually adjusted to a timing mark on petrol engines.

Contents

The crank sensor can be used in combination with a similar camshaft position sensor (CMP) [4] [5] [3] to monitor the relationship between the pistons and valves in the engine, which is particularly important in engines with variable valve timing. This method is also used to "synchronise" a four stroke engine upon starting, allowing the management system to know when to inject the fuel. It is also commonly used as the primary source for the measurement of engine speed in revolutions per minute.

Common mounting locations include the main crank pulley, the flywheel, the camshaft or on the crankshaft itself. This sensor is one of the two most important sensors in modern-day engines, together with the camshaft position sensor. As the fuel injection (diesel engines) or spark ignition (petrol engines) is usually timed from the crank sensor position signal, failing sensor will cause an engine not to start or will cut out while running. Engine speed indicator takes speed indication also from this sensor.

Types of sensors

There are several types of sensors that can be used: the inductive sensor, Hall Effect sensor, magnetoresistive sensor, and optical sensor. Inductive sensors have the simplest construction and are usually purely passive devices. Hall effect and magnetoresistive sensors have the advantage over inductive sensors in that they can detect static (non-changing) magnetic fields. Optical sensors do not have great resistance against fouling but are able to provide the most precise edge detection.

Some engines, such as GM's Premium V family, use crank position sensors which read a reluctor ring integral to the harmonic balancer. This is a much more accurate method of determining the position of the crankshaft and allows the computer to determine, within a few degrees, the exact position of the crankshaft (and thereby all connected components) at any given time.

Function

The functional objective for the crankshaft position sensor is to determine the position and/or rotational speed (RPM) of the crank. Engine Control Units use the information transmitted by the sensor to control parameters such as ignition timing and fuel injection timing. In a diesel, the sensor will control the fuel injection. The sensor output may also be related to other sensor data including the cam position to derive the current combustion cycle, this is very important for the starting of a four-stroke engine.

Sometimes, the sensor may become burnt or worn out - or just die of old age at high mileage. One likely cause of crankshaft position sensor failure is exposure to extreme heat. Others are vibration causing a wire to fracture or corrosion on the pins of harness connectors. Many modern crankshaft sensors are sealed units and therefore will not be damaged by water or other fluids. When it goes wrong, it stops transmitting the signal which contains the vital data for the ignition and other parts in the system.

A bad crank position sensor can worsen the way the engine idles, or the acceleration behaviour. If the engine is revved up with a bad or faulty sensor, it may cause misfiring, motor vibration or backfires. Acceleration might be hesitant, and abnormal shaking during engine idle might occur. In the worst case, the car may not start.

The first sign of crankshaft sensor failure, usually, is the refusal of the engine to start when hot but will start again once the engine has cooled.

One detail of some designs is the "three-wire" inductive crank sensor whereby the third wire is actually just a co-axial shield around the two main sensor wires to prevent them from picking up stray electrical pulses from elsewhere in the vehicle engine bay.

Examples

Another type of crank sensor is used on bicycles to monitor the position of the crankset, usually for the cadence readout of a cyclocomputer. These are usually reed switches mounted on the bicycle frame with a corresponding magnet attached to one of the pedals crankset arms.

Notes

GMR (giant magnetoresistance) technology is also used for Crank, Cam rotor sensing purpose. Mitsubishi is the first who used this technology in automotive application purpose.

Related Research Articles

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

An ignition system generates a spark or heats an electrode to a high temperature to ignite a fuel-air mixture in spark ignition internal combustion engines, oil-fired and gas-fired boilers, rocket engines, etc. The widest application for spark ignition internal combustion engines is in petrol (gasoline) road vehicles such as cars and motorcycles.

<span class="mw-page-title-main">Distributor</span> Device in the ignition system of an internal combustion engine

A distributor is an electric and mechanical device used in the ignition system of older spark ignition engines. The distributor's main function is to route electricity from the ignition coil to each spark plug at the correct time.

<span class="mw-page-title-main">Engine control unit</span> Computer that adjusts electronics in an internal combustion propulsion system

An engine control unit (ECU), also commonly called an engine control module (ECM), is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure optimal engine performance. It does this by reading values from a multitude of sensors within the engine bay, interpreting the data using multidimensional performance maps, and adjusting the engine actuators. Before ECUs, air–fuel mixture, ignition timing, and idle speed were mechanically set and dynamically controlled by mechanical and pneumatic means.

<span class="mw-page-title-main">Motronic</span>

Motronic is the trade name given to a range of digital engine control units developed by Robert Bosch GmbH which combined control of fuel injection and ignition in a single unit. By controlling both major systems in a single unit, many aspects of the engine's characteristics can be improved.

A spark-ignition engine is an internal combustion engine, generally a petrol engine, where the combustion process of the air-fuel mixture is ignited by a spark from a spark plug. This is in contrast to compression-ignition engines, typically diesel engines, where the heat generated from compression together with the injection of fuel is enough to initiate the combustion process, without needing any external spark.

<span class="mw-page-title-main">Hot-bulb engine</span> Internal combustion engine

The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

<span class="mw-page-title-main">Ignition timing</span>

In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.

Renix was a joint venture by Renault and Bendix that designed and manufactured automobile electronic ignitions, fuel injection systems, electronic automatic transmission controls, and various engine sensors. Major applications included various Renault and Volvo vehicles. The name became synonymous in the U.S. with the computer and fuel injection system used on the AMC/Jeep 2.5 L I4 and 4.0 L I6 engines.

The following outline is provided as an overview of and topical guide to automobiles:

<span class="mw-page-title-main">Digifant engine management system</span>

The Digifant engine management system is an electronic engine control unit (ECU), which monitors and controls the fuel injection and ignition systems in petrol engines, designed by Volkswagen Group, in cooperation with Robert Bosch GmbH.

<span class="mw-page-title-main">Push start</span>

Push starting, also known as bump starting, roll starting, clutch starting, popping the clutch or crash starting, is a method of starting a motor vehicle with an internal combustion engine and with a manual transmission and with a mechanical fuel pump and a mechanically driven generator or alternator. By pushing or letting the vehicle roll downhill then engaging the clutch at the appropriate speed the engine will turn over and start. The technique is most commonly employed when other starting methods are unavailable.

Trionic T5.5 is an engine management system in the Saab Trionic range. It controls ignition, fuel injection and turbo boost pressure. The system was introduced in the 1993 Saab 9000 2.3 Turbo with B234L and B234R engine.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

<span class="mw-page-title-main">Small engine</span> Low-powered internal combustion engine


A small engine is the general term for a wide range of small-displacement, low-powered internal combustion engines used to power lawn mowers, generators, concrete mixers and many other machines that require independent power sources. These engines often have simple designs, for example an air-cooled single-cylinder petrol engine with a pull-cord starter, capacitor discharge ignition and a gravity-fed carburettor.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. This replaced the external combustion engine for applications where the weight or size of an engine were more important.

<span class="mw-page-title-main">4 VD 14,5/12-1 SRW</span> Motor vehicle engine

The 4 VD 14,5/12-1 SRW is an inline four-cylinder diesel engine produced by the VEB IFA Motorenwerke Nordhausen from 1967 to 1990. The engine was one of the standard modular engines for agricultural and industrial use in the Comecon-countries. Approximately one million units were made.

Manifold injection is a mixture formation system for internal combustion engines with external mixture formation. It is commonly used in engines with spark ignition that use petrol as fuel, such as the Otto engine, and the Wankel engine. In a manifold-injected engine, the fuel is injected into the intake manifold, where it begins forming a combustible air-fuel mixture with the air. As soon as the intake valve opens, the piston starts sucking in the still forming mixture. Usually, this mixture is relatively homogeneous, and, at least in production engines for passenger cars, approximately stoichiometric; this means that there is an even distribution of fuel and air across the combustion chamber, and enough, but not more air present than what is required for the fuel's complete combustion. The injection timing and measuring of the fuel amount can be controlled either mechanically, or electronically. Since the 1970s and 1980s, manifold injection has been replacing carburettors in passenger cars. However, since the late 1990s, car manufacturers have started using petrol direct injection, which caused a decline in manifold injection installation in newly produced cars.

References

  1. McCord, Keith (2011). Automotive Diagnostic Systems: Understanding OBD I and OBD II. CarTech Inc. p. 105. ISBN   978-1-934709-06-1.
  2. Singh, Mahipal (2020-11-11). I.C. Engine Management System. ICARIANS - Trainer's Hub. p. 11.
  3. 1 2 "Basics of Crankshaft & Camshaft Position Sensors". www.aa1car.com. Retrieved 2022-11-17.
  4. Schnubel, Mark (2019-01-09). Today's Technician: Advanced Engine Performance Classroom Manual and Shop Manual. Cengage Learning. p. 184. ISBN   978-0-357-39065-8.
  5. Goodnight; VanGelder, Kirk T. (2017-06-30). Automotive Engine Repair. Jones & Bartlett Learning. p. 162. ISBN   978-1-284-10198-0.