This article includes a list of general references, but it lacks sufficient corresponding inline citations .(June 2016) |
A variable reluctance sensor (commonly called a VR sensor) is a transducer that measures changes in magnetic reluctance. When combined with basic electronic circuitry, the sensor detects the change in presence or proximity of ferrous objects.
With more complex circuitry and the addition of software and specific mechanical hardware, a VR sensor can also provide measurements of linear velocity, angular velocity, position, and torque.
A VR sensor used as a simple proximity sensor can determine the position of a mechanical link in a piece of industrial equipment.
A crankshaft position sensor (in an automobile engine) is used to provide the angular position of the crankshaft to the engine control unit. The engine control unit can then calculate engine speed (angular velocity).
Speed sensors used in automobile transmissions are used to measure the rotational speed (angular velocity) of shafts within the transmission. The engine control unit or transmission control unit (depending on the particular automobile) uses these sensors to determine when to shift from one gear to the next.
A pickup used in an electric guitar (or other musical instrument) detect vibrations of the metallic "strings". See Pickup (music technology) for details of this application.
This sensor consists of a permanent magnet, a ferromagnetic pole piece, and coil of wire.
VR sensors need waveform shaping for their output to be digitally readable. The normal output of a VR sensor is an analog signal, shaped much like a sine wave. The frequency and amplitude of the analog signal is proportional to the target's velocity. This waveform needs to be squared up, and flattened off by a comparator like electronic chip to be digitally readable. While discrete VR sensor interface circuits can be implemented, the semiconductor industry also offers integrated solutions. Examples are the MAX9924 to MAX9927 VR sensor interface IC from Maxim Integrated products, LM1815 VR sensor amplifier from National Semiconductor and NCV1124 from ON semiconductor. An integrated VR sensor interface circuit like the MAX9924 features a differential input stage to provide enhanced noise immunity, Precision Amplifier and Comparator with user enabled Internal Adaptive Peak Threshold or user programmed external threshold to provide a wide dynamic range and zero-crossing detection circuit to provide accurate phase Information.
To measure angular position or rotational speed of a shaft, a toothed ring made of ferrous material can be attached to the shaft. As the teeth of the rotating wheel (or other target features) pass by the face of the magnet, the amount of magnetic flux passing through the magnet and consequently the coil varies. When the gear tooth is close to the sensor, the flux is at a maximum. When the tooth is further away, the flux drops off. The moving target results in a time-varying flux that induces a proportional voltage in the coil. Subsequent electronics are then used to process this signal to get a waveform that can be more readily counted and timed. This system has been employed in automotive electronic ignition and ABS braking. By attaching two reluctor rings to a shaft, the torque can be measured. The tooth spacing on reluctor rings may be uniform, or uneven. [1]
Although VR sensors are based on very mature technology, they still offer several significant advantages. The first is low cost - coils of wire and magnets are relatively inexpensive. Unfortunately, the low cost of the transducer is partially offset by the cost of the additional signal-processing circuitry needed to recover a useful signal. And because the magnitude of the signal developed by the VR sensor is proportional to target speed, it is difficult to design circuitry to accommodate very-low-speed signals. A given VR-sensing system has a definite limit as to how slow the target can move and still develop a usable signal. An alternative but more expensive technology is Hall effect sensor. Hall effect sensors are true zero-rpm sensors and actively supply information even when there's no transmission motion at all.
One area in which VR sensors excel, however, is in high-temperature applications. Because operating temperature is limited by the characteristics of the materials used in the device, with appropriate construction VR sensors can be made to operate at temperatures in excess of 300 °C. An example of such an extreme application is sensing the turbine speed of a jet engine or engine cam shaft and crankshaft position control in an automobile.
An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.
A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor's position can be commanded to move and hold at one of these steps without any position sensor for feedback, as long as the motor is correctly sized to the application in respect to torque and speed.
An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.
A tachometer is an instrument measuring the rotation speed of a shaft or disk, as in a motor or other machine. The device usually displays the revolutions per minute (RPM) on a calibrated analogue dial, but digital displays are increasingly common.
An ignition system generates a spark or heats an electrode to a high temperature to ignite a fuel-air mixture in spark ignition internal combustion engines, oil-fired and gas-fired boilers, rocket engines, etc. The widest application for spark ignition internal combustion engines is in petrol (gasoline) road vehicles such as cars and motorcycles.
A speedometer or speed meter is a gauge that measures and displays the instantaneous speed of a vehicle. Now universally fitted to motor vehicles, they started to be available as options in the early 20th century, and as standard equipment from about 1910 onwards. Other vehicles may use devices analogous to the speedometer with different means of sensing speed, eg. boats use a pit log, while aircraft use an airspeed indicator.
A brushless DC electric motor, also known as an electronically commutated motor or synchronous DC motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields which effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.
A rotary encoder, also called a shaft encoder, is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals.
A rotary variable differential transformer (RVDT) is a type of electrical transformer used for measuring angular displacement. The transformer has a rotor which can be turned by an external force. The transformer acts as an electromechanical transducer that outputs an alternating current (AC) voltage proportional to the angular displacement of its rotor shaft.
Torsional vibration is angular vibration of an object—commonly a shaft along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.
A gear train is a mechanical system formed by mounting gears on a frame so the teeth of the gears engage.
A wheel speed sensor (WSS) or vehicle speed sensor (VSS) is a type of tachometer. It is a sender device used for reading the speed of a vehicle's wheel rotation. It usually consists of a toothed ring and pickup.
An engine control unit (ECU), also commonly called an engine control module (ECM), is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure optimal engine performance. It does this by reading values from a multitude of sensors within the engine bay, interpreting the data using multidimensional performance maps, and adjusting the engine actuators. Before ECUs, air–fuel mixture, ignition timing, and idle speed were mechanically set and dynamically controlled by mechanical and pneumatic means.
In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.
An amplidyne is an obsolete electromechanical amplifier invented prior to World War II by Ernst Alexanderson. It consists of an electric motor driving a DC generator. The signal to be amplified is applied to the generator's field winding, and its output voltage is an amplified copy of the field current. The amplidyne was used in industry in high power servo and control systems, to amplify low power control signals to control powerful electric motors, for example. It is now mostly obsolete.
Electromagnetic clutches operate electrically but transmit torque mechanically. This is why they used to be referred to as electro-mechanical clutches. Over the years, EM became known as electromagnetic versus electro-mechanical, referring more about their actuation method versus physical operation. Since the clutches started becoming popular over 60 years ago, the variety of applications and clutch designs has increased dramatically, but the basic operation remains the same today.
An electric generator or electric motor consists of a rotor spinning in a magnetic field. The magnetic field may be produced by permanent magnets or by field coils. In the case of a machine with field coils, a current must flow in the coils to generate the field, otherwise no power is transferred to or from the rotor. The process of generating a magnetic field by means of an electric current is called excitation. Field coils yield the most flexible form of magnetic flux regulation and de-regulation, but at the expense of a flow of electric current. Hybrid topologies exist, which incorporate both permanent magnets and field coils in the same configuration. The flexible excitation of a rotating electrical machine is employed by either brushless excitation techniques or by the injection of current by carbon brushes.
A crank sensor (CKP) is an electronic device used in an internal combustion engine, both petrol and diesel, to monitor the position or rotational speed of the crankshaft. This information is used by engine management systems to control the fuel injection or the ignition system timing and other engine parameters. Before electronic crank sensors were available, the distributor would have to be manually adjusted to a timing mark on petrol engines.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.