Fusible core injection molding

Last updated

Fusible core injection molding, also known as lost core injection molding, is a specialized plastic injection molding process used to mold internal cavities or undercuts that are not possible to mold with demoldable cores. Strictly speaking the term "fusible core injection molding" refers to the use of a fusible alloy as the core material; when the core material is made from a soluble plastic the process is known as soluble core injection molding. This process is often used for automotive parts, such as intake manifolds and brake housings, however it is also used for aerospace parts, plumbing parts, bicycle wheels, and footwear. [1] [2]

Contents

The most common molding materials are glass-filled nylon 6 and nylon 66. Other materials include unfilled nylons, polyphenylene sulfide, glass-filled polyaryletherketone (PAEK), glass-filled polypropylene (PP), rigid thermoplastic urethane, and elastomeric thermoplastic polyurethane. [3] [4]

History

The first patent for this type of molding process was taken out in 1968, however it was rarely used until the 1980s. That is when the automotive industry took interest in it to develop intake manifolds. [5] [6]

Process

The process consists of three major steps: casting or molding a core, inserting the core into the mold and shooting the mold, and finally removing the molding and melting out the core.

Core

First, a core is molded or die cast in the shape of the cavity specified for the molded component. It can be made from a low melting point metal, such as a tin-bismuth alloy, or a polymer, such as a soluble acrylate. The polymer has approximately the same melting temperature as the alloy, 275 °F (135 °C), however the alloy ratios can be modified to alter the melting point. Another advantage to using a metal core is that multiple smaller cores can be cast with mating plugs and holes so they can be assembled into a final large core. [7] [8]

One key in casting metal cores is to make sure they do not contain any porosity as it will induce flaws into the molded part. In order to minimize porosity the metal may be gravity cast or the molding cavity may be pressurized. Another system slowly rocks the casting dies as the molding cavity fills to "shake" the air bubbles out. [9]

The metal cores can be made from a number of low melting point alloys, with the most common being a mixture of 58% bismuth and 42% tin, which is used for molding nylon 66. One of the main reasons it is used is because it expands as it cools which packs the mold well. Other alloys include tin-lead-silver alloys and tin-lead-antimony alloys. Between these three alloy groups a melting point between 98 and 800 °F (37–425 °C) can be achieved. [3]

Polymer cores are not as common as metal cores and are usually only used for moldings that require simple internal surface details. They are usually 0.125 to 0.25 in (3.2 to 6.4 mm) thick hollow cross-sections that are molded in two halves and are ultrasonically welded together. Their greatest advantage is that they can be molded in traditional injection molding machines that the company already has instead of investing into new die casting equipment and learning how to use it. Because of this polymer core materials are most adventitious for small production runs that cannot justify the added expense of metal cores. Unfortunately it is not as recyclable as the metal alloys used in cores, because 10% new material must be added with the recycled material. [10] [11]

Molding

In the second step, the core is then inserted into the mold. For simple molds this is as simple as inserting the core and closing the dies. However, more complex tools require multiple steps from the programmed robot. For instance, some complex tools can have multiple conventional side pulls that mate with the core to add rigidity to the core and reduce the core mass. After the core is loaded and the press closed the plastic is shot. [8]

Melt-out

In the final step, the molded component and core are both demolded and the core is melted-out from the molding. This is done in a hot bath, via induction heating, or through a combination of the two. Hot baths usually use a tub filled with glycol or Lutron, which is a phenol-based liquid. The bath temperature is slightly higher than that of the core alloy's melting point, but not so high that it damages the molding. In typical commercial applications the parts are dipped into the hot bath via an overhead conveyor. The advantage to using a hot bath is that it is simpler than induction heating and it helps cure thermoset moldings. The disadvantage is that it is uneconomically slow at a cycle time of 60 to 90 minutes and it poses environmental cleanup issues. Typically the hot bath solution needs cleaning or replacement every year or every half year when used in combination with induction heating. [10]

For thermoplastic moldings induction heating of the core metal is required, otherwise the prolonged heat from a hot bath can warp it. Induction heating reduces the melt-out time to one to three minutes. The disadvantage is that induction heating does not remove all of the core material so it must then be finished off in a hot bath or be brushed out. Another disadvantage is that the induction coils must be custom built for each molding because the coils must be 1 to 4 in (25 to 102 mm) from the part. Finally, induction heating systems cannot be used with moldings that have brass or steel inserts because the induction heating process can destroy or oxidize the insert. [12]

For complex parts it can be difficult to get all of the core liquid to drain out in either melt-out process. In order to overcome this the parts may be rotated for up to an hour. Liquid core metal collects on the bottom of the heated bath and is usable for a new core. [12]

Equipment

Traditional horizontal injection molding machines have been used since the mid-1980s, however loading and unloading 100 to 200 lb (45 to 91 kg) cores are difficult so two robots are required. Moreover, the cycle time is quite long, approximately 28 seconds. These problem are overcome by using rotary or shuttle action injection molding machines. These types of machines only require one robot to load and unload cores and have a 30% shorter cycle time. However, these types of machines cost approximately 35% more than horizontal machines, require more space, and require two bottom molds (because one is in the machine during the cycle and the other is being unloaded and loaded with a new core), which adds approximately 40% to the tooling cost. For small parts, horizontal injection molding machines are still used, because the core does not weigh enough to justify the use of a rotary machine. [13]

For four-cylinder manifolds a 500-ton press is required; for a six- to eight-cylinder manifold a 600- to 800-ton press is required. [13]

Advantages and disadvantages

The greatest advantage of this process is its ability to produce single-piece injection moldings with highly complex interior geometries without secondary operations. Similarly shaped objects are usually made from aluminum castings, which can weigh 45% to 75% more than a comparable molding. The tooling also lasts longer than metal casting tooling due to the lack of chemical corrosion and wear. Other advantages include: [4]

Two of the major disadvantages of this process are the high cost and long development time. An automotive part can take four years to develop; two years in the prototype stage and two years to reach production. Not all products take this long, for instance a two-way valve produced by Johnson Controls only took 18 months. The initial cost can be as much as US$8 million to produce a four-cylinder engine manifold. However, computer flow analysis has helped reduce lead time and costs. [1] [14]

One of the difficulties that result from these long development times and high costs is making accurate cores repeatably. This is extremely important because the core is an integral part of the mold, so essentially each shot is into a new mold cavity. Another difficulty is keeping the core from melting when the plastic is shot into the mold, because the plastic is approximately twice the melting temperature of the core material. A third difficulty is the low strength of the core. Hollow plastic cores can collapse if too much pressure is used in the shot plastic. Metal cores (with low melting temperatures) are solid so they cannot collapse, but are only 10% as strong as steel cores so they can distort. This is especially a problem when molding manifolds, because the waviness of the core can be detrimental to the airflow within the runners. [7]

Another disadvantage is the need for a large space to house the injection molding machines, casting machines, melt-out equipment, and robots. [4]

Because of these disadvantages, some moldings that would be made via this process are instead made by injection molding two or more parts in a traditional injection molding machine and then welding them together. This process is less expensive and requires much less capital, however it imparts more design constraints. Because of the design constraints, sometimes parts are made with both processes to gain the advantages of both. [15]

Application

The application of the fusible core process is not limited just to the injection of thermoplastics, but with corresponding core alloys also to thermosetting plastic molding materials (duroplast). The fusible core process finds application, for example, for injection molded passenger car engine intake manifolds. By modifying the equipment, small molded parts like valves or pump housings can be manufactured, as the manufacture of the fusible cores and the injected parts can be carried out on an injection molding machine.

See also

Related Research Articles

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Injection moulding</span> Manufacturing process for producing parts by injecting molten material into a mould, or mold

Injection moulding is a manufacturing , process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals, glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed, and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers that do not melt during the injection moulding of some lower-temperature thermoplastics, can be used for some simple injection moulds.

<span class="mw-page-title-main">Induction heating</span> Process of heating an electrically conducting object by electromagnetic induction

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

<span class="mw-page-title-main">Plastic welding</span> Welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

<span class="mw-page-title-main">Sand casting</span> Metal casting process using sand as the mold material

Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand — known as casting sand — as the mold material. The term "sand casting" can also refer to an object produced via the sand casting process. Sand castings are produced in specialized factories called foundries. In 2003, over 60% of all metal castings were produced via sand casting.

<span class="mw-page-title-main">Compression molding</span> Method of molding

Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.

<span class="mw-page-title-main">Blow molding</span> Manufacturing process for forming and joining together hollow plastic parts

Blow molding is a manufacturing process for forming hollow plastic parts. It is also used for forming glass bottles or other hollow shapes.

<span class="mw-page-title-main">Rotational molding</span> Making hollow plastic objects in a heated mold

Rotational molding involves a heated mold which is filled with a charge or shot weight of the material. It is then slowly rotated, causing the softened material to disperse and stick to the walls of the mold forming a hollow part. In order to form an even thickness throughout the part, the mold rotates at all times during the heating phase, and then continues to rotate during the cooling phase to avoid sagging or deformation. The process was applied to plastics in the 1950s but in the early years was little used because it was a slow process restricted to a small number of plastics. Over time, improvements in process control and developments with plastic powders have resulted in increased use.

Spin casting, also known as centrifugal rubber mold casting (CRMC), is a method of utilizing inertia to produce castings from a rubber mold. Typically, a disc-shaped mold is spun along its central axis at a set speed. The casting material, usually molten metal or liquid thermoset plastic, is then poured in through an opening at the top-center of the mold. The filled mold then continues to spin as the metal solidifies.

<span class="mw-page-title-main">Metal injection molding</span> Metalworking process in which finely-powdered metal is mixed with binder material

Metal injection molding (MIM) is a metalworking process in which finely-powdered metal is mixed with binder material to create a "feedstock" that is then shaped and solidified using injection molding. The molding process allows high volume, complex parts to be shaped in a single step. After molding, the part undergoes conditioning operations to remove the binder (debinding) and densify the powders. Finished products are small components used in many industries and applications.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

Semi-solid metal casting (SSM) is a near net shape variant of die casting. The process is used today with non-ferrous metals, such as aluminium, copper, and magnesium, but also can work with higher temperature alloys for which no currently suitable die materials are available. The process combines the advantages of casting and forging. The process is named after the fluid property thixotropy, which is the phenomenon that allows this process to work. Simply, thixotropic fluids flow when sheared, but thicken when standing. The potential for this type of process was first recognized in the early 1970s. There are three different processes: thixocasting, rheocasting, thixomolding. SIMA refers to a specialized process to prepare aluminum alloys for thixocasting using hot and cold working.

Thermoplastic vulcanizates (TPV) are dynamically vulcanized alloys consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. They are part of the thermoplastic elastomer (TPE) family of polymers but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. There are almost 100 grades in the S portfolio that are used globally in the automotive, household appliance, electrical, construction, and healthcare markets. The name Santoprene was trademarked in 1977 by Monsanto, and the trademark is now owned by Celanese. Similar material is available from Elastron and others.

Permanent mold casting is a metal casting process that employs reusable molds, usually made from metal. The most common process uses gravity to fill the mold, however gas pressure or a vacuum are also used. A variation on the typical gravity casting process, called slush casting, produces hollow castings. Common casting metals are aluminium, magnesium, and copper alloys. Other materials include tin, zinc, and lead alloys and iron and steel are also cast in graphite molds.

<span class="mw-page-title-main">Casting</span> Manufacturing process in which a liquid is poured into a mold to solidify

Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Casting materials are usually metals or various time setting materials that cure after mixing two or more components together; examples are epoxy, concrete, plaster and clay. Casting is most often used for making complex shapes that would be otherwise difficult or uneconomical to make by other methods. Heavy equipment like machine tool beds, ships' propellers, etc. can be cast easily in the required size, rather than fabricating by joining several small pieces. Casting is a 7,000-year-old process. The oldest surviving casting is a copper frog from 3200 BC.

Shell molding, also known as shell-mold casting, is an expendable mold casting process that uses resin covered sand to form the mold. As compared to sand casting, this process has better dimensional accuracy, a higher productivity rate, and lower labour requirements. It is used for small to medium parts that require high precision. Shell molding was developed as a manufacturing process during the mid-20th century in Germany. It was invented by German engineer Johannes Croning. Shell mold casting is a metal casting process similar to sand casting, in that molten metal is poured into an expendable mold. However, in shell mold casting, the mold is a thin-walled shell created from applying a sand-resin mixture around a pattern. The pattern, a metal piece in the shape of the desired part, is reused to form multiple shell molds. A reusable pattern allows for higher production rates, while the disposable molds enable complex geometries to be cast. Shell mold casting requires the use of a metal pattern, oven, sand-resin mixture, dump box, and molten metal.

A core is a device used in casting and moulding processes to produce internal cavities and reentrant angles. The core is normally a disposable item that is destroyed to get it out of the piece. They are most commonly used in sand casting, but are also used in die casting and injection moulding.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

3D metal moulding, also referred to as metal injection moulding or (MIM), is used to manufacture components with complex geometries. The process uses a mixture of metal powders and polymer binders – also known as "feedstock" – which are then injection-moulded.

References

  1. 1 2 Schut 1991 , p. 1.
  2. Osswald, Turng & Gramann 2007 , p. 385.
  3. 1 2 Schut 1991 , p. 7.
  4. 1 2 3 Osswald, Turng & Gramann 2007 , p. 388.
  5. Erhard 2006 , p. 283.
  6. GB 1250476,Stevens, E. S.,"Moulding hollow articles",published 1971-10-20.
  7. 1 2 Schut 1991 , p. 5.
  8. 1 2 Schut 1991 , p. 6.
  9. Schut 1991 , p. 8.
  10. 1 2 Schut 1991 , p. 10.
  11. Schut 1991 , p. 9.
  12. 1 2 Schut 1991 , p. 11.
  13. 1 2 Schut 1991 , p. 4.
  14. Schut 1991 , p. 2.
  15. Ogando, Joseph (September 1997), Lost-core molding: don't count it out yet , retrieved August 12, 2009[ permanent dead link ].

Bibliography