Sustainable yield

Last updated

The sustainable yield is a form of sustainability that refers to the maximum harvest that does not deplete or over-harvest where the renewable resource can not grow back. [1] In the simplest terms, sustainable yield is the largest amount of resource that humans can take or use without causing damage or allowing for a decline to happen in the specific population. In more formal terms, the sustainable yield of natural capital is the ecological yield that can be extracted without reducing the base of capital itself, i.e. the surplus required to maintain ecosystem services at the same or increasing level over time. The term only refers to resources that are renewable in nature as extracting non-renewable resources will always diminish the natural capital. The sustainable yield of a given resource will generally vary over time with the ecosystem's needs to maintain itself, e.g. a forest that has recently suffered a blight or flooding or fire will require more of its own ecological yield to sustain and re-establish a mature forest. While doing so, the sustainable yield may be much less. The term sustainable yield is most commonly used in forestry, fisheries, and groundwater applications.

Contents

A sustainable yield is calculated by the carrying capacity divided by 2. [2] At half of the carrying capacity, the population can be harvested and quickly recover, allowing for more resources. Although this calculation seems easy, it is not because it is difficult to calculate the carrying capacity of a population in nature since it is almost always based on estimations.

Importance

Understanding sustainable yield is essential to nature since it indicates how much a population can produce and what humans can glean from without causing fundamental problems in the specie's population. If the population is harvested above its maximum sustainable yield, it can eventually risk extinction. [3]

Forestry

Sustainable yield is an important component of sustainable forest management. In the forestry context it is the largest amount of harvest activity that can occur without degrading the productivity of the stock. [4] The idea of sustainable yield of forests had shifted focus from only output, to include maintaining production capacity and maintaining the natural renewal capacity of forest vegetation. [5] One of the first federal written laws to warrant that future generations will have a sufficient wood supply and regulate the wood harvest rate was the O & C Act. [6] The O & C Act is a positive environmental impact since it helps maintain a viable, sustainable yield, and it ensures that trees will continue to be a significant part of the natural landscape everywhere and continue to supply wildlife habitats, carbon storage, and recreational activities.

Fishery

Fishery management utilizes the concept of sustainable yield to determine how much fish can be removed, so that the population remains sustainable. Net fishing professionally 0544990019 KALFA.jpg
Fishery management utilizes the concept of sustainable yield to determine how much fish can be removed, so that the population remains sustainable.

This concept is important in fishery management, in which sustainable yield is defined as the number of fish that can be extracted without reducing the base of fish stock, and the maximum sustainable yield is defined as the amount of fish that can be extracted under given environmental conditions. [7] In fisheries, the basic natural capital or virgin population, must decrease with extraction. At the same time productivity increases. Hence, sustainable yield would be within the range in which the natural capital together with its production are able to provide satisfactory yield. [8] It may be very difficult to quantify sustainable yield, because every dynamic ecological conditions and other factors not related to harvesting induce changes and fluctuations in both, the natural capital and its productivity. [7]

Groundwater Application

In the case of groundwater there is a safe yield of water extraction per unit time, beyond which the aquifer risks the state of overdrafting or even depletion. Depletion of an aquifer, or a decline in groundwater levels has the potential to cause land subsidence which can cause sinkholes. [9] In order to calculate this safe yield of water extraction in the area, a lot of considerations need to be taken into account. The first is the water budget, figuring out and understanding where water is used by humans, getting recharged, and being lost due to possible maintenance issues and natural phenomena. Another consideration is changing technology. Technology allows for possible gains in supply, for example, desalination technology, turning saltwater into drinking water. The other considerations include temporal, spatial, and monetary aspects, which all cause changes in the water system that change the amount of usable water. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Natural resource</span> Resources that exist without actions of humankind.

Natural resources are resources that are drawn from nature and used with few modifications. This includes the sources of valued characteristics such as commercial and industrial use, aesthetic value, scientific interest, and cultural value. On Earth, it includes sunlight, atmosphere, water, land, all minerals along with all vegetation, and wildlife.

<span class="mw-page-title-main">Resource depletion</span> Depletion of natural organic and inorganic resources

Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources. The use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource. The more a resource is depleted the more the value of the resource increases. There are several types of resource depletion, the most known being: Aquifer depletion, deforestation, mining for fossil fuels and minerals, pollution or contamination of resources, slash-and-burn agricultural practices, soil erosion, and overconsumption, excessive or unnecessary use of resources.

In population ecology and economics, maximum sustainable yield (MSY) is theoretically, the largest yield that can be taken from a species' stock over an indefinite period. Fundamental to the notion of sustainable harvest, the concept of MSY aims to maintain the population size at the point of maximum growth rate by harvesting the individuals that would normally be added to the population, allowing the population to continue to be productive indefinitely. Under the assumption of logistic growth, resource limitation does not constrain individuals' reproductive rates when populations are small, but because there are few individuals, the overall yield is small. At intermediate population densities, also represented by half the carrying capacity, individuals are able to breed to their maximum rate. At this point, called the maximum sustainable yield, there is a surplus of individuals that can be harvested because growth of the population is at its maximum point due to the large number of reproducing individuals. Above this point, density dependent factors increasingly limit breeding until the population reaches carrying capacity. At this point, there are no surplus individuals to be harvested and yield drops to zero. The maximum sustainable yield is usually higher than the optimum sustainable yield and maximum economic yield.

Ecological yield is the harvestable population growth of an ecosystem. It is most commonly measured in forestry: sustainable forestry is defined as that which does not harvest more wood in a year than has grown in that year, within a given patch of forest.

<span class="mw-page-title-main">Overfishing</span> Removal of a species of fish from water at a rate that the species cannot replenish

Overfishing is the removal of a species of fish from a body of water at a rate greater than that the species can replenish its population naturally, resulting in the species becoming increasingly underpopulated in that area. Overfishing can occur in water bodies of any sizes, such as ponds, wetlands, rivers, lakes or oceans, and can result in resource depletion, reduced biological growth rates and low biomass levels. Sustained overfishing can lead to critical depensation, where the fish population is no longer able to sustain itself. Some forms of overfishing, such as the overfishing of sharks, has led to the upset of entire marine ecosystems. Types of overfishing include growth overfishing, recruitment overfishing, and ecosystem overfishing.

<span class="mw-page-title-main">Exploitation of natural resources</span> Use of natural resources for economic growth

The exploitation of natural resources is the use of natural resources for economic growth, sometimes with a negative connotation of accompanying environmental degradation. Environmental degradation can result from depletion of natural resources, this would be accompanied by negative effects to the economic growth of the effected areas.

<span class="mw-page-title-main">Sustainable fishery</span> Sustainable fishing for the long term fishing

A conventional idea of a sustainable fishery is that it is one that is harvested at a sustainable rate, where the fish population does not decline over time because of fishing practices. Sustainability in fisheries combines theoretical disciplines, such as the population dynamics of fisheries, with practical strategies, such as avoiding overfishing through techniques such as individual fishing quotas, curtailing destructive and illegal fishing practices by lobbying for appropriate law and policy, setting up protected areas, restoring collapsed fisheries, incorporating all externalities involved in harvesting marine ecosystems into fishery economics, educating stakeholders and the wider public, and developing independent certification programs.

<span class="mw-page-title-main">Fisheries management</span> Regulation of fishing

The goal of fisheries management is to produce sustainable biological, environmental and socioeconomic benefits from renewable aquatic resources. Wild fisheries are classified as renewable when the organisms of interest produce an annual biological surplus that with judicious management can be harvested without reducing future productivity. Fishery management employs activities that protect fishery resources so sustainable exploitation is possible, drawing on fisheries science and possibly including the precautionary principle.

In economics, a common-pool resource (CPR) is a type of good consisting of a natural or human-made resource system, whose size or characteristics makes it costly, but not impossible, to exclude potential beneficiaries from obtaining benefits from its use. Unlike pure public goods, common pool resources face problems of congestion or overuse, because they are subtractable. A common-pool resource typically consists of a core resource, which defines the stock variable, while providing a limited quantity of extractable fringe units, which defines the flow variable. While the core resource is to be protected or nurtured in order to allow for its continuous exploitation, the fringe units can be harvested or consumed.

<span class="mw-page-title-main">Overdrafting</span> Unsustainable extraction of groundwater

Overdrafting is the process of extracting groundwater beyond the equilibrium yield of an aquifer. Groundwater is one of the largest sources of fresh water and is found underground. The primary cause of groundwater depletion is the excessive pumping of groundwater up from underground aquifers.

The Commonize Costs–Privatize Profits Game is a concept developed by the ecologist Garrett Hardin to describe a "game" widely played in matters of resource allocation. The concept is Hardin's interpretation of the closely related phenomenon known as the tragedy of the commons, and is referred to in political discourse as "privatizing profits and socializing losses."

Resource refers to all the materials available in our environment which are technologically accessible, economically feasible and culturally sustainable and help us to satisfy our needs and wants. Resources can broadly be classified according to their availability — they are categorized into renewable and non-renewable resources. They can also be classified as actual and potential based on the level of development and use; based on origin they can be classified as biotic and abiotic, and based on their distribution, as ubiquitous and localised. An item may become a resource with time and development of technology. The benefits of resource utilization may include increased wealth, proper functioning of a system, or enhanced well-being. From a human perspective, a natural resource is anything obtained from the environment to satisfy human needs and wants. From a broader biological or ecological perspective, a resource satisfies the needs of a living organism.

This is a glossary of environmental science.

The sustainable yield of natural capital is the ecological yield that can be extracted without reducing the base of capital itself, i.e. the surplus required to maintain ecosystem services at the same or increasing level over time. This yield usually varies over time with the needs of the ecosystem to maintain itself, e.g. a forest that has recently suffered a blight or flooding or fire will require more of its own ecological yield to sustain and re-establish a mature forest. While doing so, the sustainable yield may be much less.

<span class="mw-page-title-main">Population dynamics of fisheries</span>

A fishery is an area with an associated fish or aquatic population which is harvested for its commercial or recreational value. Fisheries can be wild or farmed. Population dynamics describes the ways in which a given population grows and shrinks over time, as controlled by birth, death, and migration. It is the basis for understanding changing fishery patterns and issues such as habitat destruction, predation and optimal harvesting rates. The population dynamics of fisheries is used by fisheries scientists to determine sustainable yields.

This is a glossary of terms used in fisheries, fisheries management and fisheries science.

<span class="mw-page-title-main">Earth Overshoot Day</span> Calculated calendar date when humanitys yearly consumption exceeds Earths replenishment

Earth Overshoot Day (EOD) is the calculated illustrative calendar date on which humanity's resource consumption for the year exceeds Earth’s capacity to regenerate those resources that year. The term "overshoot" represents the level by which human population's demand overshoots the sustainable amount of biological resources regenerated on Earth. When viewed through an economic perspective, the annual EOD represents the day by which the planet's annual regenerative budget is spent, and humanity enters environmental deficit spending. EOD is calculated by dividing the world biocapacity, by the world ecological footprint, and multiplying by 365, the number of days in a year:

<span class="mw-page-title-main">Overexploitation</span> Depleting a renewable resource

Overexploitation, also called overharvesting, refers to harvesting a renewable resource to the point of diminishing returns. Continued overexploitation can lead to the destruction of the resource, as it will be unable to replenish. The term applies to natural resources such as water aquifers, grazing pastures and forests, wild medicinal plants, fish stocks and other wildlife.

<span class="mw-page-title-main">Deforestation in British Columbia</span>

Deforestation in British Columbia has resulted in a net loss of 1.06 million hectares of tree cover between the years 2000 and 2020. More traditional losses have been exacerbated by increased threats from climate change driven fires, increased human activity, and invasive species. The introduction of sustainable forestry efforts such as the Zero Net Deforestation Act seeks to reduce the rate of forest cover loss. In British Columbia, forests cover over 55 million hectares, which is 57.9% of British Columbia's 95 million hectares of land. The forests are mainly composed of coniferous trees, such as pines, spruces and firs.

<span class="mw-page-title-main">Climate change in Indonesia</span> Emissions, impacts and responses of Indonesia

Due to its geographical and natural diversity, Indonesia is one of the countries most susceptible to the impacts of climate change. This is supported by the fact that Jakarta has been listed as the world's most vulnerable city, regarding climate change. It is also a major contributor as of the countries that has contributed most to greenhouse gas emissions due to its high rate of deforestation and reliance on coal power.

References

  1. "Sustainability | Description, Theories, & Practices | Britannica". www.britannica.com. Retrieved 2023-05-06.
  2. Takashina, Nao; Mougi, Akihiko (October 2015). "Maximum sustainable yields from a spatially-explicit harvest model". Journal of Theoretical Biology. 383: 87–92. arXiv: 1503.00997 . Bibcode:2015JThBi.383...87T. doi:10.1016/j.jtbi.2015.07.028. PMID   26254215. S2CID   5211753.
  3. PEW (April 2012). "MSY - Maximum Sustainable Yield" (PDF). pewtrusts.org. Retrieved 2023-05-01.
  4. Elbakidze, Marine; Andersson, Kjell; Angelstam, Per; Armstrong, W. Glen; Axelsson, Robert; Doyon, Frederik; Hermansson, Martin; Jacobsson, Jonas; Pautov, Yurij (March 2013). "Sustained Yield Forestry in Sweden and Russia: How Does it Correspond to Sustainable Forest Management Policy?". Ambio. 42 (2): 160–173. Bibcode:2013Ambio..42..160E. doi:10.1007/s13280-012-0370-6. PMC   3593033 . PMID   23475653.
  5. Wiersum, K. Freerk (May 1995). "200 years of sustainability in forestry: Lessons from history". Environmental Management. 19 (3): 321–329. Bibcode:1995EnMan..19..321W. doi:10.1007/BF02471975. ISSN   0364-152X. S2CID   153325794.
  6. "Sustained Yield Forestry". Association of O&C Counties. Retrieved 2023-05-07.
  7. 1 2 Ricker, W.E. (1975). "Computation and Interpretation of Biological Statistics of Fish Populations". Bulletin of the Fisheries Research Board of Canada. 191.
  8. Reynolds, John D.; Mace, Georgina M.; Redford, Kent H.; Robinson, John G. (2001-10-18). Conservation of Exploited Species. Cambridge University Press. ISBN   978-0-521-78733-8.
  9. "Land Subsidence | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-05-07.
  10. Maimone, Mark (2004). "Defining and Managing Sustainable Yield" (PDF). Ground Water. 42 (6): 809–814. Bibcode:2004GrWat..42..809M. doi:10.1111/j.1745-6584.2004.tb02739.x. PMID   15584295. S2CID   29594099.

Notes