Forestation

Last updated

Forestation is a vital ecological process where forests are established and grown through afforestation and reforestation efforts. [1] Afforestation involves planting trees on previously non-forested lands, while reforestation focuses on replanting trees in areas that were once deforested. [2] This process plays an important role in restoring degraded forests, enhancing ecosystems, promoting carbon sequestration, and biodiversity conservation. [3] [2] [4] [5]

Contents

Forestation acts as a carbon sink, absorbing billions of CO2 annually, [6] making a significant contribution to mitigating climate change. Forests also support biodiversity conservation, providing habitats for about 80% of the world's biodiversity and contributing to ecosystem restoration. [2]

Water management is improved through forestation, as trees regulate hydrological cycles, reduce soil erosion, and prevent water runoff. Their ability to capture and store water helps in preventing floods and droughts. [2]

Forestation also has important socio-economic benefits. Afforestation and reforestation projects create employment opportunities, prompting sustainable livelihoods and supporting economies [7]

Scientific research plays a crucial role in helping forestation initiatives. Climate modeling, [8] [5] [2] biodiversity, [4] [1] carbon sequestration, [5] [8] [9] GIS applications, [4] [3] and long-term monitoring [2] [1] help assess and improve forestation efforts, ensuring their effectiveness and success.

Definition

Forestation, encompassing afforestation and reforestation, is the process of establishing and nurturing forests on lands that either previously had forest cover or were subjected to deforestation. [1] This ecological practice plays a vital role in restoring degraded forest areas and enhancing ecosystems, leading to improved water storage and purification. [2] Forestation significantly contributes to biodiversity conservation by providing habitats for approximately 80% of the world's biodiversity. [2]

One of the key environmental benefits of forestation is its role as a carbon sink, absorbing approximately 2.4 billion metric tons of CO2 annually, making it a valuable tool for climate change mitigation. [6] By sequestering carbon, forests play a critical role in regulating local and global climate, underscoring the importance of forestation initiatives for environmental sustainability. [3] [2] [4] [5]

Importance and benefits

Forestation acts as a significant carbon sink, absorbing approximately 2.4 billion metric tons of CO2 annually, making a substantial contribution to climate change mitigation. [3] [6] Forests also support biodiversity conservation, providing habitats for about 80% of the world's biodiversity and contributing to ecosystem restoration and resilience. [2]

Water management is improved through forestation, as trees regulate hydrological cycles, reduce soil erosion, and prevent water runoff. Their capacity to capture and store water helps in mitigating floods and droughts, making forestation essential for water resource management. [2]

Afforestation and reforestation projects create employment opportunities, particularly in rural areas, thus promoting sustainable livelihoods. Investing in forest restoration can lead to the creation of many jobs in various forest-related activities. [7]

Forests act as natural air filters, absorbing pollutants and improving air quality. Urban forestation projects have been successful in reducing respiratory illnesses and enhancing overall air quality in cities. [4] [3] [5]

Forestation contributes to climate regulation, providing shade and cooling effects. By shading and evaporation, forests can lower local temperatures, offering a more comfortable environment in urban areas and reducing the impact of extreme heat. [5] [3]

Related Research Articles

<span class="mw-page-title-main">Carbon sink</span> Reservoir absorbing more carbon from, than emitting to, the air

A carbon sink is a natural or artificial process that "removes a greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overarching term is carbon pool, which is all the places where carbon on Earth can be, i.e. the atmosphere, oceans, soil, plants, and so forth. A carbon sink is a type of carbon pool that has the capability to take up more carbon from the atmosphere than it releases.

<span class="mw-page-title-main">Deforestation</span> Conversion of forest to non-forest for human use

Deforestation or forest clearance is the removal and destruction of a forest or stand of trees from land that is then converted to non-forest use. Deforestation can involve conversion of forest land to farms, ranches, or urban use. About 31% of Earth's land surface is covered by forests at present. This is one-third less than the forest cover before the expansion of agriculture, with half of that loss occurring in the last century. Between 15 million to 18 million hectares of forest, an area the size of Bangladesh, are destroyed every year. On average 2,400 trees are cut down each minute. Estimates vary widely as to the extent of deforestation in the tropics. In 2019, nearly a third of the overall tree cover loss, or 3.8 million hectares, occurred within humid tropical primary forests. These are areas of mature rainforest that are especially important for biodiversity and carbon storage.

<span class="mw-page-title-main">Reforestation</span> Land regeneration method (replacement of trees)

Reforestation is the practice of restoring previously existing forests and woodlands that have been destroyed or damaged. The prior forest destruction might have happened through deforestation, clearcutting or wildfires. Two important purposes of reforestation programs are for harvesting of wood or for climate change mitigation purposes. Reforestation can also help with ecosystem restoration. One method for reforestation is to establish tree plantations, also called plantation forests. They cover about 131 million ha worldwide, which is 3% of the global forest area and 45% of the total area of planted forests.

<span class="mw-page-title-main">Logging</span> Process of cutting, processing, and moving trees

Logging is the process of cutting, processing, and moving trees to a location for transport. It may include skidding, on-site processing, and loading of trees or logs onto trucks or skeleton cars. In forestry, the term logging is sometimes used narrowly to describe the logistics of moving wood from the stump to somewhere outside the forest, usually a sawmill or a lumber yard. In common usage, however, the term may cover a range of forestry or silviculture activities.

<span class="mw-page-title-main">Tree planting</span> Process of transplanting tree seedlings

Tree planting is the process of transplanting tree seedlings, generally for forestry, land reclamation, or landscaping purposes. It differs from the transplantation of larger trees in arboriculture and from the lower-cost but slower and less reliable distribution of tree seeds. Trees contribute to their environment over long periods of time by providing oxygen, improving air quality, climate amelioration, conserving water, preserving soil, and supporting wildlife. During the process of photosynthesis, trees take in carbon dioxide and produce the oxygen we breathe.

<span class="mw-page-title-main">Afforestation</span> Establishment of trees where there were none previously

Afforestation is the establishment of a forest or stand of trees in an area where there was no recent tree cover. In comparison, reforestation means re-establishing forest that have either been cut down or lost due to natural causes, such as fire, storm, etc. There are three types of afforestation: Natural regeneration, agroforestry and tree plantations. Afforestation has many benefits. In the context of climate change, afforestation can be helpful for climate change mitigation through the route of carbon sequestration. Afforestation can also improve the local climate through increased rainfall and by being a barrier against high winds. The additional trees can also prevent or reduce topsoil erosion, floods and landslides. Finally, additional trees can be a habitat for wildlife, and provide employment and wood products.

<span class="mw-page-title-main">Climate change mitigation</span> Actions to reduce net greenhouse gas emissions to limit climate change

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Costs of climate change mitigation are estimated at around 1% and 2% of GDP. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

<span class="mw-page-title-main">Land use, land-use change, and forestry</span> Greenhouse gas inventory sector

Land use, land-use change, and forestry (LULUCF), also referred to as Forestry and other land use (FOLU) or Agriculture, Forestry and Other Land Use (AFOLU), is defined as a "greenhouse gas inventory sector that covers emissions and removals of greenhouse gases resulting from direct human-induced land use such as settlements and commercial uses, land-use change, and forestry activities."

<span class="mw-page-title-main">Carbon sequestration</span> Storing carbon in a carbon pool (natural as well as enhanced or artificial processes)

Carbon sequestration is the process of storing carbon in a carbon pool. It plays a crucial role in limiting climate change by reducing the amount of carbon dioxide in the atmosphere. There are two main types of carbon sequestration: biologic and geologic.

The Lower Guinean forests also known as the Lower Guinean-Congolian forests, are a region of coastal tropical moist broadleaf forest in West Africa, extending along the eastern coast of the Gulf of Guinea from eastern Benin through Nigeria and Cameroon.

Forest management is a branch of forestry concerned with overall administrative, legal, economic, and social aspects, as well as scientific and technical aspects, such as silviculture, forest protection, and forest regulation. This includes management for timber, aesthetics, recreation, urban values, water, wildlife, inland and nearshore fisheries, wood products, plant genetic resources, and other forest resource values. Management objectives can be for conservation, utilisation, or a mixture of the two. Techniques include timber extraction, planting and replanting of different species, building and maintenance of roads and pathways through forests, and preventing fire.

<span class="mw-page-title-main">Deforestation in Nigeria</span>

Deforestation in Nigeria refers to the extensive and rapid clearing of forests within the borders of Nigeria. This environmental issue has significant impacts on both local and global scales.

<span class="mw-page-title-main">Carbon dioxide removal</span> Removal of atmospheric carbon dioxide through human activity

Carbon dioxide removal (CDR) is a process in which carbon dioxide is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR. In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.

<span class="mw-page-title-main">Mangrove restoration</span> Ecosystem regeneration

Mangrove restoration is the regeneration of mangrove forest ecosystems in areas where they have previously existed. Restoration can be defined as "the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed." Mangroves can be found throughout coastal wetlands of tropical and subtropical environments. Mangroves provide essential ecosystem services such as water filtration, aquatic nurseries, medicinal materials, food, and lumber. Additionally, mangroves play a vital role in climate change mitigation through carbon sequestration and protection from coastal erosion, sea level rise, and storm surges. Mangrove habitat is declining due to human activities such as clearing land for industry and climate change. Mangrove restoration is critical as mangrove habitat continues to rapidly decline. Different methods have been used to restore mangrove habitat, such as looking at historical topography, or mass seed dispersal. Fostering the long-term success of mangrove restoration is attainable by involving local communities through stakeholder engagement.

<span class="mw-page-title-main">Blue carbon</span> Carbon stored in coastal and marine ecosystems

Blue carbon is a concept within climate change mitigation that refers to "biologically driven carbon fluxes and storage in marine systems that are amenable to management". Most commonly, it refers to the role that tidal marshes, mangroves and seagrasses can play in carbon sequestration. These ecosystems can play an important role for climate change mitigation and ecosystem-based adaptation. However, when blue carbon ecosystems are degraded or lost, they release carbon back to the atmosphere, thereby adding to greenhouse gas emissions.

<span class="mw-page-title-main">Deforestation and climate change</span> Relationship between deforestation and global warming

Deforestation is a primary contributor to climate change, and climate change affects the health of forests. Land use change, especially in the form of deforestation, is the second largest source of carbon dioxide emissions from human activities, after the burning of fossil fuels. Greenhouse gases are emitted from deforestation during the burning of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions. As of 2019, deforestation is responsible for about 11% of global greenhouse gas emissions. Carbon emissions from tropical deforestation are accelerating.

<span class="mw-page-title-main">Carbon farming</span> Agricultural methods that capture carbon

Carbon farming is a set of agricultural methods that aim to store carbon in the soil, crop roots, wood and leaves. The technical term for this is carbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere. This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase the soil's organic matter content. This can also aid plant growth, improve soil water retention capacity and reduce fertilizer use. Sustainable forest management is another tool that is used in carbon farming. Carbon farming is one component of climate-smart agriculture. It is also one way to remove carbon dioxide from the atmisphere.

Namatale Central Forest Reserve is a forest located in Mbale district, Uganda. It is a significant natural resource that plays a crucial role in the region's ecosystem and biodiversity conservation efforts.

<span class="mw-page-title-main">Reforestation in Nigeria</span>

Reforestation in Nigeria employs both natural and artificial methods. Reforestation involves the deliberate planting of trees and restoring forested areas that have been depleted or destroyed. It involves a planned restocking of the forest to ensure sustainable supply of timber and other forest products. Reforestation, in essence, involves replenishing forests to guarantee a consistent and sustainable supply of timber and various other forest resources. This objective can be accomplished through either natural regeneration techniques or artificial regeneration methods. Both of these approaches have been utilized in the reforestation efforts within Nigeria's forests. At the initiation of the reforestation program in Nigeria, the natural regeneration approach was chosen for two primary reasons. Firstly, it aimed to preserve the rainforest in its original state by allowing it to regenerate naturally from the existing seed bank in the soil. Secondly, and of significant importance, this method was selected due to budgetary constraints, as there were insufficient funds available to establish plantations through direct means.

Climate change effects on tropical regions includes changes in marine ecosystems, human livelihoods, biodiversity, degradation of tropical rainforests and effects the environmental stability in these areas. Climate change is characterized by alterations in temperature, precipitation patterns, and extreme weather events. Tropical areas, located between the Tropic of Cancer and the Tropic of Capricorn, are known for their warm temperatures, high biodiversity, and distinct ecosystems, including rainforests, coral reefs, and mangroves.

References

  1. 1 2 3 4 Prevedello, Jayme A.; Winck, Gisele R.; Weber, Marcelo M.; Nichols, Elizabeth; Sinervo, Barry (20 March 2019). "Impacts of forestation and deforestation on local temperature across the globe". PLOS ONE. 14 (3): e0213368. Bibcode:2019PLoSO..1413368P. doi: 10.1371/journal.pone.0213368 . PMC   6426338 . PMID   30893352. Gale   A579457448.
  2. 1 2 3 4 5 6 7 8 9 10 11 Benedek, Zsófia; Fertő, Imre (2013). "Development and application of a new Forestation Index: global forestation patterns and drivers" (Document). IEHAS Discussion Papers. hdl:10419/108304. ProQuest   1698449297.
  3. 1 2 3 4 5 6 AbdulBaqi, Faten Khalid (June 2022). "The effect of afforestation and green roofs techniques on thermal reduction in Duhok city". Trees, Forests and People. 8: 100267. doi: 10.1016/j.tfp.2022.100267 . S2CID   248646593.
  4. 1 2 3 4 5 Zhang, Mingfang; Wei, Xiaohua (5 March 2021). "Deforestation, forestation, and water supply". Science. 371 (6533): 990–991. Bibcode:2021Sci...371..990Z. doi:10.1126/science.abe7821. PMID   33674479. S2CID   232124649.
  5. 1 2 3 4 5 6 Windisch, Michael G.; Davin, Edouard L.; Seneviratne, Sonia I. (October 2021). "Prioritizing forestation based on biogeochemical and local biogeophysical impacts". Nature Climate Change. 11 (10): 867–871. Bibcode:2021NatCC..11..867W. doi:10.1038/s41558-021-01161-z. S2CID   237947801. ProQuest   2578272675.
  6. 1 2 3 Kintisch, Eli (18 March 2015). "Amazon rainforest ability to soak up carbon dioxide is falling". Science. doi:10.1126/science.aab0336.
  7. 1 2 Kurtz, Michele (Fall 2020). "Growing trees, growing jobs". American Forests. 126 (3): 18–23. ProQuest   2464421409.
  8. 1 2 Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert (2 September 2022). "A climate risk analysis of Earth's forests in the 21st century" (PDF). Science. 377 (6610): 1099–1103. Bibcode:2022Sci...377.1099A. doi:10.1126/science.abp9723. PMID   36048937. S2CID   252010508.
  9. Portmann, Raphael; Beyerle, Urs; Davin, Edouard; Fischer, Erich M.; De Hertog, Steven; Schemm, Sebastian (4 October 2022). "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation". Nature Communications. 13 (1): 5569. Bibcode:2022NatCo..13.5569P. doi:10.1038/s41467-022-33279-9. PMC   9532392 . PMID   36195588.