Secondary forest

Last updated
The forest in Stanley Park, Vancouver, British Columbia, Canada is generally considered to have second and third growth characteristics. This photo shows regeneration, a tree growing out of the stump of another tree that was felled in 1962 by the remnants of Typhoon Freda. Stanley tree.jpg
The forest in Stanley Park, Vancouver, British Columbia, Canada is generally considered to have second and third growth characteristics. This photo shows regeneration, a tree growing out of the stump of another tree that was felled in 1962 by the remnants of Typhoon Freda.

A secondary forest (or second-growth forest) is a forest or woodland area which has regenerated through largely natural processes after human-caused disturbances, such as timber harvest or agriculture clearing, or equivalently disruptive natural phenomena. [1] It is distinguished from an old-growth forest (primary or primeval forest), which has not recently undergone such disruption, and complex early seral forest, as well as third-growth forests that result from harvest in second growth forests. Secondary forest regrowing after timber harvest differs from forest regrowing after natural disturbances such as fire, insect infestation, or windthrow because the dead trees remain to provide nutrients, structure, and water retention after natural disturbances. Secondary forests are notably different from primary forests in their composition and biodiversity; however, they may still be helpful in providing habitat for native species, preserving watersheds, and restoring connectivity between ecosystems. [2]

Contents

Development

Secondary forestation is common in areas where forests have been degraded or destroyed by agriculture or timber harvesting; this includes abandoned pastures or fields that were once forests. [1] Additionally, secondary forestation can be seen in regions where forests have been lost by the slash-and-burn method, a component of some shifting cultivation systems of agriculture. [3] While many definitions of secondary forests limit the cause of degradation to human activities, other definitions include forests that experienced similar degradation under natural phenomena like fires or landslides. [1]

Secondary forests re-establish by the process of succession. Openings created in the forest canopy allow sunlight to reach the forest floor. An area that has been cleared will first be colonized by pioneer species , followed by shrubs and bushes. Over time, trees that were characteristic of the original forest begin to dominate the forest again. [4] It typically takes a secondary forest 40 to 100 years to begin to resemble the original old-growth forest; however, in some cases a secondary forest will not succeed, due to erosion or soil nutrient loss in certain tropical forests. [5] Depending on the forest, the development of primary characteristics that mark a successful secondary forest may take anywhere from a century to several millennia. Hardwood forests of the eastern United States, for example, can develop primary characteristics in one or two generations of trees, or 150–500 years. Today, most of the forests of the United States – especially those in the eastern part of the country – as well as forests of Europe consist of secondary forest. [6]

Characteristics

Oak plantings in a secondary woodland, Tilgate Forest. This mixed conifer and broadleaf woodland is located in West Sussex, United Kingdom. Oak plantings in secondary woodland, Tilgate Forest - geograph.org.uk - 3587683.jpg
Oak plantings in a secondary woodland, Tilgate Forest. This mixed conifer and broadleaf woodland is located in West Sussex, United Kingdom.

Secondary forests tend to have trees closer spaced than primary forests and contain less undergrowth than primary forests. Usually, secondary forests have only one canopy layer, whereas primary forests have several. [1] Species composition in the canopy of secondary forests is usually markedly different, as well. [1]

Secondary forests can also be classified by the way in which the original forest was disturbed; examples of these proposed categories include post-extraction secondary forests, rehabilitated secondary forests, and post-abandonment secondary forests. [1]

Biodiversity

When forests are harvested, they either regenerate naturally or artificially (by planting and seeding select tree species). The result is often a second growth forest which is less biodiverse than the old growth forest. [5] Patterns of regeneration in secondary forests show that species richness can quickly recover to pre-disturbance levels via secondary succession; however, relative abundances and identities of species can take much longer to recover. [2] Artificially restored forests, in particular, are highly unlikely to compare to their old-growth counterparts in species composition. [5] Successful recovery of biodiversity is also dependent upon local conditions, such as soil fertility, water availability, forest size, existing vegetation and seed sources, edge effect stressors, toxicity (resulting from human operations like mining), and management strategies (in assisted restoration scenarios). [5]

Low to moderate disturbances have been shown to be extremely beneficial to increase in biodiversity in secondary forests. [7] These secondary disturbances can clear the canopies to encourage lower canopy growth as well as provide habitats for small organisms such as insects, bacteria and fungi which may feed on the decaying plant material. Additionally, forest restoration techniques such as agroforestry and intentionally planting/seeding native species can be combined with natural regeneration to restore biodiversity more effectively. [5] This has also been shown to improve ecosystem service functionality, as well as rural independence and livelihoods. [5] Some of these techniques are less successful at restoring original plant-soil interactions. In certain cases (as in Amazon tropical ecosystems), agroforestry practices have led to soil microbiomes that favor bacterial communities rather than the fungal communities seen in old-growth forests or naturally regenerated secondary forests. [3]

Climate change mitigation

Deforestation is one of the main causes of anthropogenic carbon dioxide emissions, making it one of the largest contributors to climate change. Though preserving old-growth forests is most effective at maintaining biodiversity and ecosystem functionality, secondary forests may play a role in climate change mitigation. [5] Despite the species loss that occurs with primary forest removal, secondary forests can still be beneficial to ecological and anthropogenic communities. They protect the watershed from further erosion and provide habitat; secondary forests may also buffer edge effects around mature forest fragments and increase connectivity between them. [5] Secondary forests may also be a source of wood and other forest products for rural communities.

Though not as effective as primary forests, secondary forests store more soil carbon than other land-uses, such as tree plantations. [8] Land-use conversions from secondary forests to rubber plantations in Asia are expected to rise by millions of hectares by 2050; as such, the carbon stored within the biomass and soil of secondary forests is anticipated to be released into the atmosphere. [8] In other places, forest restoration - namely the development of secondary forests - has been a governmental priority in order to meet national and international targets on biodiversity and carbon emissions. [9] Recommendations from the Intergovernmental Panel on Climate Change (IPCC), Convention on Biological Diversity, and REDD+ have led to efforts to reduce and combat deforestation in places like Panama and Indonesia. [9] Natural and human-assisted growth of secondary forests can offset carbon emissions and help countries meet climate targets. [5]

Biomes

Rainforests

Secondary rainforest canopy on Ko Mak island in Thailand. Koh Mak (island), Thailand, Secondary forest canopy.jpg
Secondary rainforest canopy on Ko Mak island in Thailand.

In the case of semi-tropical rainforests, where soil nutrient levels are characteristically low, the soil quality may be significantly diminished following the removal of primary forest. In addition to soil nutrient levels, two areas of concern with tropical secondary forest restoration are plant biodiversity and carbon storage; it has been suggested that it takes longer for a tropical secondary forest to recover its biodiversity levels than its carbon pools. [9] In Panama, growth of new forests from abandoned farmland exceeded loss of primary rainforest in 1990. [10] However, due to the diminished quality of soil, among other factors, the presence of a significant majority of primary forest species fail to recover in these second-growth forests.[ citation needed ]

See also

Notes

  1. 1 2 3 4 5 6 Chokkalingam, U.; de Jong, W. (2001-11-12). "Array - CIFOR Knowledge". CIFOR. Retrieved 2023-04-02.
  2. 1 2 Rozendaal, Danaë M. A.; Bongers, Frans; Aide, T. Mitchell; Alvarez-Dávila, Esteban; Ascarrunz, Nataly; Balvanera, Patricia; Becknell, Justin M.; Bentos, Tony V.; Brancalion, Pedro H. S.; Cabral, George A. L.; Calvo-Rodriguez, Sofia; Chave, Jerome; César, Ricardo G.; Chazdon, Robin L.; Condit, Richard (March 2019). "Biodiversity recovery of Neotropical secondary forests". Science Advances. 5 (3): eaau3114. doi:10.1126/sciadv.aau3114. ISSN   2375-2548. PMC   6402850 . PMID   30854424.
  3. 1 2 Leite, Márcio Fernandes Alves; Liu, Binbin; Gómez Cardozo, Ernesto; Silva, Hulda Rocha e; Luz, Ronildson Lima; Muchavisoy, Karol Henry Mavisoy; Moraes, Flávio Henrique Reis; Rousseau, Guillaume Xavier; Kowalchuk, George; Gehring, Christoph; Kuramae, Eiko Eurya (March 2023). "Microbiome resilience of Amazonian forests: Agroforest divergence to bacteria and secondary forest succession convergence to fungi". Global Change Biology. 29 (5): 1314–1327. doi: 10.1111/gcb.16556 . ISSN   1354-1013. PMC   10108277 .
  4. "Successional Changes in Communities | Learn Science at Scitable". www.nature.com. Retrieved 2023-04-02.
  5. 1 2 3 4 5 6 7 8 9 Chazdon, Robin L. (2008-06-13). "Beyond deforestation: restoring forests and ecosystem services on degraded lands". Science. 320 (5882): 1458–1460. doi:10.1126/science.1155365. ISSN   1095-9203. PMID   18556551.
  6. "Global Forest Resource Assessment 2020". www.fao.org. Retrieved 2023-04-02.
  7. Martin, Maxence; Morin, Hubert; Fenton, Nicole J. (2019-12-11). "Secondary disturbances of low and moderate severity drive the dynamics of eastern Canadian boreal old-growth forests". Annals of Forest Science. 76 (4): 108. doi: 10.1007/s13595-019-0891-2 . ISSN   1297-966X.
  8. 1 2 Blécourt, Marleen de; Brumme, Rainer; Xu, Jianchu; Corre, Marife D.; Veldkamp, Edzo (2013-07-19). "Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations". PLOS ONE. 8 (7): e69357. doi: 10.1371/journal.pone.0069357 . ISSN   1932-6203. PMC   3716606 . PMID   23894456.
  9. 1 2 3 Martin, Philip A.; Newton, Adrian C.; Bullock, James M. (2013-12-22). "Carbon pools recover more quickly than plant biodiversity in tropical secondary forests". Proceedings. Biological Sciences. 280 (1773): 20132236. doi:10.1098/rspb.2013.2236. ISSN   1471-2954. PMC   3826225 . PMID   24197410.
  10. "New Jungles Prompt a Debate on Rain Forests" article by Elisabeth Rosenthal in The New York Times January 29, 2009

General References

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Forest</span> Dense collection of trees covering a relatively large area

A forest is an ecosystem characterized by a dense community of trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological function. The United Nations' Food and Agriculture Organization (FAO) defines a forest as, "Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under agricultural or urban use." Using this definition, Global Forest Resources Assessment 2020 found that forests covered 4.06 billion hectares, or approximately 31 percent of the world's land area in 2020.

Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession reverts the land to its natural physical state. Degradation is an evolution, different from natural evolution, related to the local climate and vegetation. It is due to the replacement of primary plant communities by the secondary communities. This replacement modifies the humus composition and amount, and affects the formation of the soil. It is directly related to human activity. Soil degradation may also be viewed as any change or ecological disturbance to the soil perceived to be deleterious or undesirable.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

<span class="mw-page-title-main">Tropical forest</span> Generic forest in the tropics

Tropical forests are forested landscapes in tropical regions: i.e. land areas approximately bounded by the tropic of Cancer and Capricorn, but possibly affected by other factors such as prevailing winds.

<span class="mw-page-title-main">Tropical rainforest</span> Forest in areas with heavy rainfall in the tropics

Tropical rainforests are dense and warm rainforests that occur in tropical rainforest climate where there is no dry season – all months have an average precipitation of at least 60 mm. True rainforests are typically found between 10 degrees north and south of the equator ; they are a subset of the tropical forest biome that occurs roughly within the 28-degree latitudes. Tropical rainforests are a type of tropical moist broadleaf forest, that includes the more extensive seasonal tropical forests.

<span class="mw-page-title-main">Old-growth forest</span> Forest that has developed over a long period of time without disturbance

An old-growth forest is a forest that has developed over a long period of time without disturbance. Due to this, old-growth forests exhibit unique ecological features. The Food and Agriculture Organization of the United Nations defines primary forests as naturally regenerated forests of native tree species where there are no clearly visible indications of human activity and the ecological processes are not significantly disturbed. One-third of the world's forests are primary forests. Old-growth features include diverse tree-related structures that provide diverse wildlife habitats that increases the biodiversity of the forested ecosystem. Virgin or first-growth forests are old-growth forests that have never been logged. The concept of diverse tree structure includes multi-layered canopies and canopy gaps, greatly varying tree heights and diameters, and diverse tree species and classes and sizes of woody debris.

<span class="mw-page-title-main">Clearcutting</span> Forestry/logging practice in which most or all trees in an area are uniformly cut down

Clearcutting, clearfelling or clearcut logging is a forestry/logging practice in which most or all trees in an area are uniformly cut down. Along with shelterwood and seed tree harvests, it is used by foresters to create certain types of forest ecosystems and to promote select species that require an abundance of sunlight or grow in large, even-age stands. Logging companies and forest-worker unions in some countries support the practice for scientific, safety and economic reasons, while detractors consider it a form of deforestation that destroys natural habitats and contributes to climate change. Environmentalists, traditional owners, local residents and others have regularly campaigned against clearcutting, including through the use of blockades and nonviolent direct action.

<span class="mw-page-title-main">Forest dynamics</span> Biotic and abiotic ecosystem influences

Forest dynamics describes the underlying physical and biological forces that shape and change a forest ecosystem. The continuous state of change in forests can be summarized with two basic elements: disturbance and succession.

<span class="mw-page-title-main">Forest ecology</span> Study of interactions between the biota and environment in forests.

Forest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms in that area functioning together with all of the non-living physical (abiotic) factors of the environment.

<span class="mw-page-title-main">Secondary succession</span> Redevelopment of an encology after an event that changes it radically

Secondary succession is the secondary ecological succession of a plant's life. As opposed to the first, primary succession, secondary succession is a process started by an event that reduces an already established ecosystem to a smaller population of species, and as such secondary succession occurs on preexisting soil whereas primary succession usually occurs in a place lacking soil. Many factors can affect secondary succession, such as trophic interaction, initial composition, and competition-colonization trade-offs. The factors that control the increase in abundance of a species during succession may be determined mainly by seed production and dispersal, micro climate; landscape structure ; bulk density, pH, and soil texture.

The following outline is provided as an overview of and guide to forestry:

<span class="mw-page-title-main">Temperate deciduous forest</span> Deciduous forest in the temperate regions

Temperate deciduous or temperate broad-leaf forests are a variety of temperate forest 'dominated' by deciduous trees that lose their leaves each winter. They represent one of Earth's major biomes, making up 9.69% of global land area. These forests are found in areas with distinct seasonal variation that cycle through warm, moist summers, cold winters, and moderate fall and spring seasons. They are most commonly found in the Northern Hemisphere, with particularly large regions in eastern North America, East Asia, and a large portion of Europe, though smaller regions of temperate deciduous forests are also located in South America. Examples of trees typically growing in the Northern Hemisphere's deciduous forests include oak, maple, basswood, beech and elm, while in the Southern Hemisphere, trees of the genus Nothofagus dominate this type of forest. Temperate deciduous forests provide several unique ecosystem services, including habitats for diverse wildlife, and they face a set of natural and human-induced disturbances that regularly alter their structure.

<span class="mw-page-title-main">Assisted natural regeneration</span>

Assisted natural regeneration (ANR) is the human protection and preservation of natural tree seedlings in forested areas. Seedlings are, in particular, protected from undergrowth and extremely flammable plants such as Imperata grass. Though there is no formal definition or methodology, the overall goal of ANR is to create and improve forest productivity. It typically involves the reduction or removal of barriers to natural regeneration such as soil degradation, competition with weeds, grasses or other vegetation, and protection against disturbances, which can all interfere with growth. In addition to protection efforts, new trees are planted when needed or wanted. With ANR, forests grow faster than they would naturally, resulting in a significant contribution to carbon sequestration efforts. It also serves as a cheaper alternative to reforestation due to decreased nursery needs.

FORECAST is a management-oriented, stand-level, forest-growth and ecosystem-dynamics model. The model was designed to accommodate a wide variety of silvicultural and harvesting systems and natural disturbance events in order to compare and contrast their effect on forest productivity, stand dynamics, and a series of biophysical indicators of non-timber values.

<span class="mw-page-title-main">Forest restoration</span>

Forest restoration is defined as “actions to re-instate ecological processes, which accelerate recovery of forest structure, ecological functioning and biodiversity levels towards those typical of climax forest” i.e. the end-stage of natural forest succession. Climax forests are relatively stable ecosystems that have developed the maximum biomass, structural complexity and species diversity that are possible within the limits imposed by climate and soil and without continued disturbance from humans. Climax forest is therefore the target ecosystem, which defines the ultimate aim of forest restoration. Since climate is a major factor that determines climax forest composition, global climate change may result in changing restoration aims. Additionally, the potential impacts of climate change on restoration goals must be taken into account, as changes in temperature and precipitation patterns may alter the composition and distribution of climax forests.

<span class="mw-page-title-main">Gap dynamics</span>

Gap dynamics refers to the pattern of plant growth that occurs following the creation of a forest gap, a local area of natural disturbance that results in an opening in the canopy of a forest. Gap dynamics are a typical characteristic of both temperate and tropical forests and have a wide variety of causes and effects on forest life.

<span class="mw-page-title-main">Afforestation in Japan</span> Projects to plant native tree species in open areas

The Japanese temperate rainforest is well sustained and maintains a high biodiversity. One method that has been utilized in maintaining the health of forests in Japan has been afforestation. The Japanese government and private businesses have set up multiple projects to plant native tree species in open areas scattered throughout the country. This practice has resulted in shifts in forest structure and a healthy temperate rainforest that maintains a high biodiversity.

In ecology regeneration is the ability of an ecosystem – specifically, the environment and its living population – to renew and recover from damage. It is a kind of biological regeneration.

<span class="mw-page-title-main">Tree plantation</span>

A tree plantation, forest plantation, plantation forest, timber plantation or tree farm is a forest planted for high volume production of wood, usually by planting one type of tree as a monoculture forest. The term tree farm also is used to refer to tree nurseries and Christmas tree farms.