Mycoforestry

Last updated
Amanita species are ectomycorrhizal with many trees. Amanita praecox 86186.jpg
Amanita species are ectomycorrhizal with many trees.

Mycoforestry is an ecological forest management system implemented to enhance forest ecosystems and plant communities, by introducing the mycorrhizal and saprotrophic fungi. Mycoforestry is considered a type of permaculture [1] and can be implemented as a beneficial component of an agroforestry system. It can enhance the yields of tree crops and produce edible mushrooms, an economically valuable product. By integrating plant-fungal associations into a forestry management system, native forests can be preserved, wood waste can be recycled back into the ecosystem, carbon sequestration can be increased, planted restoration sites are enhanced, and the sustainability of forest ecosystems are improved. [2] [3] Mycoforestry is an alternative to the practice of clearcutting, which removes dead wood from forests, thereby diminishing nutrient availability and reducing soil depth. [4]

Contents

Selection of fungal species

According to Paul Stamets, the first principle for the creation of a mycoforestry system is to utilize native fungal species. Implementing a mycoforestry system provides the potential of improving restoration efforts and the possibility of economic gain through mushroom cropping and harvesting. However to utilize native fungal flora, first the relationships between present fungal species and growth substrate, and habitat need to be studied.

A simple way to introduce a mycoforestry system and enhance out-plantings for crops and forest restoration sites is to "use mycorrhizal spore inoculum when replanting forest lands." [2] For this process it is best to match native trees with native mycorrhizal fungi. This method keeps and will promote the functioning of the native ecosystem, and native biodiversity.

It is assumed in a functioning forest ecosystem an underground mycelial network persists even if no fruiting bodies are visible. [5] A period of disappearance of mushrooms from an area should not cause alarm. In order to trigger the formation of fruiting bodies, many fungal species require specific environmental conditions. Most species of fungi do not fruit year round.

Mycoforestry is an emergent scientific field and practice. [2] Until broadly standardized protocols are created and perfected, the collection of both current and historical ecological site conditions will improve the success of the project. [2] Therefore, a survey of fungal relations at the site under both prime and poor conditions is beneficial to implementation of a mycoforestry system.

Saprotrophic fungi

Edible oyster mushrooms (Pleurotus sp.) fruiting from a stump Und wieder Pilze.JPG
Edible oyster mushrooms ( Pleurotus sp.) fruiting from a stump

The second principle is to promote saprotrophic fungi in the environment. [2] Saprophytic fungi are crucial to mycoforestry systems because these are the primary composers breaking down wood and returning nutrients to the soil for use by the rest of the forest ecosystem. This can be accomplished through inoculation of wood debris at site. Spored oils (biodegradable oils containing fungal spores) can be used in chainsaws when problematic or invasive hardwood requires felling. This method is a simple means to inoculate a tree. Additionally plug spawn can be implemented and injected into wood mass again prompting colonization by the selected fungus. Eventually repeated colonization efforts should not be necessary as many fungal life forms are strong and will spread and sustain in the soil on their own. [5]

In management of the mycoforestry system, it is important that dead wood be in contact with the ground. This allows fungus to reach up from the soil and decompose fallen wood releasing nutrients at a much quicker rate then if the wood is left standing. [2] Additionally, it is important to leave dead wood on site for decomposition back into the soil. [2] This philosophy is similarly based to the fact that clearcutting of a forest reduces soil nutrients and thickness. [4]

Beneficial fungal interactions

Armillaria, a parasitic fungus Armillaria mellea 620.jpg
Armillaria , a parasitic fungus

The third principle is to implement species known to benefit plant species. [2] These are commonly mycorrhizal fungus that form long term associations with plants, often extending inside of plants roots, acting as an additional root system, and improving absorption of nutrients and water.

Utilizing mushroom species that attract insects could be a useful source of fish food. This practice makes the mycoforestry a larger system. Unlike most agriculture systems it helps the environment in a number of ways. It ties all biological aspects of the environment together, creating sustainable living and food production as well as sustainable fisheries similar to the ancient Hawaiian Ahupua'a, which utilized sustainable all portions of the land for environmental and food security. [6]

Additionally fungal species can be implemented that compete with disease-causing agents like Armillaria root rots, [2] to provide long term protection of the forestry system.

Additionally, the implementation of an agroforestry system performs mycoremediation and mycofiltration activities, cleaning up toxins and restoring the environment.

See also

Related Research Articles

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, the plant root system and its surroundings. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Truffle</span> Fruiting body of a subterranean ascomycete fungus

A truffle is the fruiting body of a subterranean ascomycete fungus, one of the species of the genus Tuber. More than one hundred other genera of fungi are classified as truffles including Geopora, Peziza, Choiromyces, and Leucangium. These genera belong to the class Pezizomycetes and the Pezizales order. Several truffle-like basidiomycetes are excluded from Pezizales, including Rhizopogon and Glomus. Truffles are ectomycorrhizal fungi, so they are found in close association with tree roots. Spore dispersal is accomplished through fungivores, animals that eat fungi. These fungi have ecological roles in nutrient cycling and drought tolerance.

<span class="mw-page-title-main">Polypore</span> Group of fungi

Polypores are a group of fungi that form large fruiting bodies with pores or tubes on the underside. They are a morphological group of basidiomycetes-like gilled mushrooms and hydnoid fungi, and not all polypores are closely related to each other. Polypores are also called bracket fungi or shelf fungi, and they characteristically produce woody, shelf- or bracket-shaped or occasionally circular fruiting bodies that are called conks.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza. They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Forest ecology</span> Study of interactions between the biota and environment in forests.

Forest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms in that area functioning together with all of the non-living physical (abiotic) factors of the environment.

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

Glomus aggregatum is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Like other species in this phylum it forms obligate symbioses with plant roots, where it obtains carbon (photosynthate) from the host plant in exchange for nutrients and other benefits.

<i>Glomus</i> (fungus) Genus of arbuscular mycorrhizal fungi

Glomus is a genus of arbuscular mycorrhizal (AM) fungi, and all species form symbiotic relationships (mycorrhizae) with plant roots. Glomus is the largest genus of AM fungi, with ca. 85 species described, but is currently defined as non-monophyletic.

<span class="mw-page-title-main">Ericoid mycorrhiza</span> Species of fungus

The ericoid mycorrhiza is a mutualistic relationship formed between members of the plant family Ericaceae and several lineages of mycorrhizal fungi. This symbiosis represents an important adaptation to acidic and nutrient poor soils that species in the Ericaceae typically inhabit, including boreal forests, bogs, and heathlands. Molecular clock estimates suggest that the symbiosis originated approximately 140 million years ago.

<span class="mw-page-title-main">Wood-decay fungus</span> Any species of fungus that digests moist wood, causing it to rot

A wood-decay or xylophagous fungus is any species of fungus that digests moist wood, causing it to rot. Some species of wood-decay fungi attack dead wood, such as brown rot, and some, such as Armillaria, are parasitic and colonize living trees. Excessive moisture above the fibre saturation point in wood is required for fungal colonization and proliferation. In nature, this process causes the breakdown of complex molecules and leads to the return of nutrients to the soil. Wood-decay fungi consume wood in various ways; for example, some attack the carbohydrates in wood, and some others decay lignin. The rate of decay of wooden materials in various climates can be estimated by empirical models.

<span class="mw-page-title-main">Hydnellum peckii</span> Species of fungus

Hydnellum peckii is a fungus in the genus Hydnellum of the family Bankeraceae. It is a hydnoid species, producing spores on the surface of vertical spines or tooth-like projections that hang from the undersurface of the fruit bodies. It is found in North America, Europe, and was recently discovered in Iran (2008) and Korea (2010). Hydnellum peckii is a mycorrhizal species, and forms mutually beneficial relationships with a variety of coniferous trees, growing on the ground singly, scattered, or in fused masses.

<span class="mw-page-title-main">Fungivore</span> Organism that consumes fungi

Fungivory or mycophagy is the process of organisms consuming fungi. Many different organisms have been recorded to gain their energy from consuming fungi, including birds, mammals, insects, plants, amoebas, gastropods, nematodes, bacteria and other fungi. Some of these, which only eat fungi, are called fungivores whereas others eat fungi as only part of their diet, being omnivores.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

Paleomycology is the study of fossil fungi. Paleomycology is considered a subdiscipline of paleobotany, centered on mushrooms, fungal spores, and hyphae preserved in sediment layers and rock. Fungi have been found in the palaeoecological record as far back as the Paleozoic era, with evidence of influencing the evolutionary processes of early flowering plants.

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

Mycorrhizal associations have profoundly impacted the evolution of plant life on Earth ever since the initial adaptation of plant life to land. In evolutionary biology, mycorrhizal symbiosis has prompted inquiries into the possibility that symbiosis, not competition, is the main driver of evolution.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

<i>Austroboletus occidentalis</i> Species of fungus

Austroboletus occidentalis, commonly known as the ridge-stemmed bolete, is a species of bolete fungus found in Australia. It was described as new to science in 1986 by mycologists Roy Watling and Norma M. Gregory. The species name occidentalis is derived from the Latin occidens "west"..

References

  1. Friedman, Zev. Digging In. New Life Journal. 1 May 2009.
  2. 1 2 3 4 5 6 7 8 9 Stamets, Paul (2005). Mycelium running: how mushrooms can help save the world . Ten Speed Press. p.  65. ISBN   1-58008-579-2. mycoforestry.
  3. Thomas, Paul W.; Jump, Alistair S. (2023-03-21). "Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts". Proceedings of the National Academy of Sciences. 120 (12): e2220079120. Bibcode:2023PNAS..12020079T. doi:10.1073/pnas.2220079120. ISSN   0027-8424. PMC   10041105 . PMID   36913576.
  4. 1 2 Dahlgren, R. A.; Driscoll, C. T. The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Plant and Soil. Volume 158, Number 2 / January 1994.
  5. 1 2 Frankland, Juliet C. All you ever wanted to know about Mycelium. NWFG Newsletter. April 1997. (ISSN 1465-8054) Print.
  6. Kagawa, Aurora; Vitousek, Peter (April 2012). "The Ahupua'a of Puanui: A Resource for Understanding Hawaiian Rain-Fed Agriculture". Pacific Science. 66 (2): 161-172. doi:10.2984/66.2.6.