Edible mushroom

Last updated
A wide variety of edible mushrooms being sold by a vendor in Guatemala 060725 vendedora de hongos guatemala.JPG
A wide variety of edible mushrooms being sold by a vendor in Guatemala

Edible mushrooms are the fleshy fruit bodies of numerous species of properly identified and prepared fungi. Edibility may be defined by criteria including their palatability and absence of dangerous mycotoxins. Edible mushrooms are consumed for their nutritional and culinary value, often either being cultivated or harvested wild. Easily cultivated and common wild mushrooms are often available in markets; those that are more difficult to obtain may be collected on a smaller scale.

Contents

To ensure safety, wild mushrooms must be correctly identified before their edibility can be assumed. Deadly poisonous mushrooms that are frequently confused with edible mushrooms include several species of the genus Amanita , particularly A. phalloides (the death cap). Some mushrooms that are edible for most people can cause allergic reactions in others; old or improperly stored specimens can cause food poisoning. Additionally, mushrooms can absorb chemicals from polluted locations, accumulating pollutants and potentially lethal heavy metals.

Psychoactive mushrooms can also be confused with edible species. Additionally, mushrooms were consumed medicinally in traditional medicine, but are not upheld by evidence.

Description

Assorted wild edible mushrooms Edible fungi in basket 2009 G1 (cropped).jpg
Assorted wild edible mushrooms

Mushrooms can appear either below ground (hypogeous) or above ground (epigeous) and can be picked by hand. [1] The act of foraging fungi is referred to as mushroom hunting . Easily cultivated and common wild mushrooms are often available in markets; those that are more difficult to obtain (such as the truffle, matsutake, and morel) may be collected on a smaller scale and are sometimes available at farmers' markets or other local grocers.[ citation needed ]

Edibility may be defined by criteria including desirable taste and aroma and the absence of poisonous effects on humans. [2] Edible mushrooms are consumed for their nutritional and culinary value. Mushrooms, especially dried shiitake, are sources of umami flavor. [3] [4]

List of edible mushrooms

Commercially cultivated

Commercially harvested wild fungi

Commercially cultivated Japanese edible mushroom species (clockwise from left): enokitake, buna-shimeji, bunapi-shimeji, king oyster mushroom and shiitake Asian mushrooms.jpg
Commercially cultivated Japanese edible mushroom species (clockwise from left): enokitake, buna-shimeji, bunapi-shimeji, king oyster mushroom and shiitake

Other edible wild species

Conditionally edible species

Amanita muscaria, a conditionally edible species Fliegenpilz.JPG
Amanita muscaria , a conditionally edible species

Cultivation

Mushroom and truffle production, 2019
CountryQuantity
(millions of tonnes)
Flag of the People's Republic of China.svg  China 8.94
Flag of Japan.svg  Japan 0.47
Flag of the United States (23px).png  United States 0.38
Flag of Poland.svg  Poland 0.36
Flag of the Netherlands.svg  Netherlands 0.30
World11.90
Source: FAOSTAT of the United Nations [27]

Mushroom cultivation has a long history, with over twenty species commercially cultivated. Mushrooms are cultivated in at least 60 countries. [28] A fraction of the many fungi consumed by humans are currently cultivated and sold commercially. Commercial cultivation is important ecologically, as there have been concerns of the depletion of larger fungi such as chanterelles in Europe, possibly because the group has grown popular yet remains a challenge to cultivate.[ citation needed ]

Some mushrooms, particularly mycorrhizal species, have not yet been successfully cultivated.[ citation needed ]

In 2019, world production of commercial mushrooms and recorded truffle collection reported to the Food and Agriculture Organization was 11.9 million tonnes, led by China with 75% of the total.

Safety concerns

Some wild species are toxic, or at least indigestible, when raw. [29] Failure to identify poisonous mushrooms and confusing them with edible ones has resulted in death. [29] [30] [31] Although in the 21st century primitive digital applications exist to aid with identification, these are unreliable and some inexperienced hunters relying upon them have been seriously poisoned. [32]

Deadly poisonous mushrooms that are frequently confused with edible mushrooms and responsible for many fatal poisonings include several species of the genus Amanita , particularly A. phalloides (the death cap). Some mushrooms that are edible for most people can cause allergic reactions in some individuals with no prior knowledge of an allergy; old or improperly stored specimens can go rancid quickly and cause food poisoning. [33] When eating any fungus for the first time, only a small quantity of one species should be consumed at a time, allowing for several hours to identify any potential allergic reaction. [34] Even normally edible species of mushrooms may be dangerous, as certain mushrooms growing in polluted locations can act as chemical-absorbers, accumulating pollutants and heavy metals, including arsenic and iron, sometimes in lethal concentrations. [35] On the other hand, some cooking preparations may reduce the toxicity of slightly poisonous mushrooms enough to be consumed as survival food; for example, many prized fungi will cause gastric upset when eaten uncooked, such as Morchella species.[ citation needed ]

Additionally, several varieties of fungi are known and documented to contain psychedelic drugs—the so-called magic mushrooms—yet resemble perfectly edible, non-psychoactive species. While not necessarily lethal to consume, to the uninitiated, an accidentally induced psychedelic experience can run the gamut from benign to terrifying, even depressing or psychotic. The most commonly consumed for recreational psychoactive use are Amanita muscaria (the fly agaric) and Psilocybe cubensis , with the former containing alkaloids such as muscimol and the latter predominately psilocybin.[ citation needed ] Both have the potential to induce in the user feelings of awe, wonder with nature, interesting visual hallucinations and inner peace (even in mild doses), but excessive or accidental consumption can create feelings of insanity, helplessness and fear, usually persisting for a few hours.[ citation needed ]

White mushrooms, cooked, boiled, drained, without salt
Nutritional value per 100 g (3.5 oz)
Energy 117 kJ (28 kcal)
5.3 g
Fat
0.5 g
2.2 g
Vitamins and minerals
Vitamins Quantity
%DV
Vitamin A equiv.
0%
0 μg
Thiamine (B1)
8%
0.1 mg
Riboflavin (B2)
23%
0.3 mg
Niacin (B3)
28%
4.5 mg
Pantothenic acid (B5)
44%
2.2 mg
Vitamin B6
6%
0.1 mg
Folate (B9)
5%
18 μg
Vitamin B12
0%
0 μg
Choline
4%
19.9 mg
Vitamin D
3%
21 IU
Vitamin E
0%
0 mg
Vitamin K
0%
0 μg
Minerals Quantity
%DV
Calcium
0%
6 mg
Copper
56%
0.5 mg
Iron
9%
1.7 mg
Magnesium
3%
12 mg
Manganese
4%
0.1 mg
Phosphorus
7%
87 mg
Potassium
12%
356 mg
Selenium
24%
13.4 μg
Zinc
8%
0.9 mg
Other constituentsQuantity
Water91.1 g

Percentages estimated using US recommendations for adults, [36] except for potassium, which is estimated based on expert recommendation from the National Academies [37]

Nutrition

Higher mushroom consumption has been associated with lower risk of breast cancer. [38] As of 2021, mushroom consumption has not been shown to conclusively affect risk factors for cardiovascular diseases. [39]

A commonly eaten mushroom is the white mushroom (Agaricus bisporus). In a 100-gram (3+12-ounce) reference serving, Agaricus mushrooms provide 92 kilojoules (22 kilocalories) of food energy and are 92% water, 3% carbohydrates, 3% protein, and 0.3% fat. They contain high levels of riboflavin, niacin, and pantothenic acid, with moderate content of phosphorus. Otherwise, raw white mushrooms generally have low amounts of essential nutrients. Although cooking by boiling lowers mushroom water content only 1%, the contents per 100 grams for several nutrients increase appreciably, especially for dietary minerals.[ citation needed ]

The content of vitamin D is absent or low unless mushrooms are exposed to sunlight or purposely treated with artificial ultraviolet light, even after harvesting and being processed into dry powder. [40] [41]

Vitamin D

NameChemical compositionStructure
Vitamin D1 ergocalciferol with lumisterol, 1:1 [42]
Vitamin D2 ergocalciferol (made from ergosterol) Ergocalciferol.svg
Vitamin D3 cholecalciferol (made from 7-Dehydrocholesterol in the skin). Cholecalciferol.svg

When exposed to UV light before or after harvest, mushrooms convert their large concentrations of ergosterol into vitamin D2. [40] [41] This is similar to the reaction in humans, where vitamin D3 is synthesized after exposure to sunlight.

Testing showed an hour of UV light exposure before harvesting made a serving of mushrooms contain twice the U.S. Food and Drug Administration's daily recommendation of vitamin D. With 5 minutes of artificial UV light exposure after harvesting, a serving of mushrooms contained four times as much. [40] Analysis also demonstrated that natural sunlight produced vitamin D2. [41]

The form of vitamin D found in UV-irradiated mushrooms is ergocalciferol, or vitamin D2. This is not the same as cholecalciferol, called vitamin D3, which is produced by UV-irradiation of human or animal skin, fur, and feathers. Although vitamin D2 has vitamin-D activity in humans, and is widely used in food fortification and nutritional supplements, vitamin D3 is more commonly used in dairy and cereal products.[ citation needed ]

Uses

Edible mushrooms include many fungal species that are either harvested wild or cultivated. Easily cultivated and common wild mushrooms are often available in markets; those that are more difficult to obtain (such as the truffle, matsutake, and morel) may be collected on a smaller scale by private gatherers and are sometimes available at farmers' markets or other local grocers. Mushrooms can be purchased fresh when in season and many species are also sold dried.

Before assuming that any wild mushroom is edible, it should be correctly identified. Accurate determination of and proper identification of a species is the only safe way to ensure edibility, and the only safeguard against possible poisoning. Some edible species cannot be identified without the use of advanced techniques such as chemistry or microscopy.[ citation needed ]

History

The earliest evidence of consumption of mushrooms comes from 13,000-year-old archaeological sites in Chile.[ citation needed ] Ötzi, the mummy of a man who lived between 3400 and 3100  BCE in Europe, was found with two types of mushroom in his belongings.[ citation needed ] Ancient Romans and Greeks, particularly the upper classes, used mushrooms for culinary purposes. Food tasters were employed by Roman emperors to ensure that mushrooms were safe to eat. [43] The Forme of Cury , a 14th-century compilation of medieval English recipes, features a recipe of mushrooms and leeks cooked in broth. [44]

Culinary

Cooking

Stuffed mushrooms prepared using portobello mushrooms Stuffed portabella mushrooms, June 2009.jpg
Stuffed mushrooms prepared using portobello mushrooms

Cooking mushrooms before consumption is often required, both to eliminate mycotoxins including trace levels of toxic hydrazines and also to improve palatability and texture. [45] Frying, roasting, baking, and microwaving are all used to prepare mushrooms. Cooking lowers the amount of water present in the food. Chitin, a structural polymer in the cell walls of mushrooms, does not break down until 380 °C (716 °F), which is not reached in any normal cooking. [46] [47] However, chitin connections may be broken down by cooking, allowing for easier digestion. [45]

Storage

A collection of dried mushrooms Dried mushrooms.jpg
A collection of dried mushrooms

Mushrooms should be used as soon as possible, even if refrigerated (particularly Coprinus species). [34] Mushrooms can be frozen, but they freeze best when cooked first. [48] They can also be canned, dried, pickled, or salted. [49]

In traditional medicine

Medicinal mushrooms are mushrooms or extracts from mushrooms that are thought to be treatments for diseases, yet remain unconfirmed in mainstream science and medicine, and so are not approved as drugs or medical treatments. [50] Such use of mushrooms therefore falls into the domain of traditional medicine [51] for which there is no direct high-quality clinical evidence of efficacy. [52] [53] (Since about the mid-20th century, some compounds found in fungi have been developed scientifically for medicine, e.g. antibiotics.) [54] [55] [56]

Preliminary research on mushroom extracts has been conducted to determine if anti-disease properties exist, such as for polysaccharide-K [57] or lentinan. [58] Some extracts have widespread use in Japan, Korea and China, as potential adjuvants for radiation treatments and chemotherapy. [59] [60]

See also

References

  1. Chang, Shu-Ting; Phillip G. Miles (1989). Mushrooms: cultivation, nutritional value, medicinal effect, and Environmental Impact. CRC Press. pp. 4–6. ISBN   978-0-8493-1043-0.
  2. Mattila P, Suonpää K, Piironen V (2000). "Functional properties of edible mushrooms". Nutrition. 16 (7–8): 694–6. doi:10.1016/S0899-9007(00)00341-5. PMID   10906601.
  3. Ole G. Mouritsen; Klavs Styrbaek (2014). Umami: Unlocking the Secrets of the Fifth Taste. Columbia University Press. pp. 11, 52, 110. ISBN   978-0-231-16890-8.
  4. Paul Adams (24 November 2015). "Put the science of umami to work for you". Popular Science, Bonnier Corporation. Retrieved 11 December 2015.
  5. "Every Type Of Mushroom You Need To Know About". Huffingtonpost.com. 19 March 2014. Retrieved 23 October 2018.
  6. "Common Types of Mushrooms". Realsimple.com. Archived from the original on 16 November 2018. Retrieved 23 October 2018.
  7. "What's the Difference Between Cremini and Portobello Mushrooms?". Thekitchen.com. Retrieved 23 October 2018.
  8. 1 2 3 "Cultivation of Oyster Mushrooms". Extension.psu.edu. Retrieved 23 October 2018.
  9. 1 2 Alla Katsnelson (April 26, 2022). "Cultivating Coveted Morels Year-Round and Indoors". The New York Times . Retrieved June 9, 2023.
  10. "Calvatia gigantea (giant puffball)". Kew Gardens. Retrieved 8 August 2015.
  11. Arora 1986, pp. 158–159.
  12. Bessette, Alan E. (1997). Mushrooms of Northeastern North America. Syracuse, New York: Syracuse University Press. pp. 453–454. ISBN   978-0-8156-0388-7.
  13. Arora 1986, p. 68.
  14. Weber, Nancy S.; Smith, Alexander H.; Guravich, Dan (1985). A field guide to southern mushrooms. Ann Arbor, Michigan: University of Michigan Press. ISBN   0-472-85615-4. OCLC   10207909.
  15. Pegler, D. N.; Piearce, G. D. (1980). "The Edible Mushrooms of Zambia". Kew Bulletin. 35 (3): 475. Bibcode:1980KewBu..35..475P. doi:10.2307/4110017. JSTOR   4110017.
  16. "Termitomyces: exploring the world's most mysterious mushroom". World Agroforestry. Retrieved 2022-08-18.
  17. T. mesenterium was first reported in Great Britain after the wet August 2008: "New fungi species unearthed in UK". BBC News. 9 October 2008. Retrieved 9 October 2008.
  18. Neimark, Jill (24 August 2015). "Scourge No More: Chefs Invite Corn Fungus To The Plate". NPR. Retrieved 2020-05-18.
  19. Phillips, Roger. "Lactarius deterrimus". rogersmushrooms.com. RogersMushrooms. Archived from the original on 2 April 2015. Retrieved 2 October 2025.
  20. Arora 1986, p. 69.
  21. Arora 1986, pp. 68–69.
  22. Pegler, David N. (1983). Mushrooms and Toadstools. London: Mitchell Beazley Publishing. p. 78. ISBN   0-85533-500-9.
  23. Arora 1986, p. 78.
  24. 1 2 Rubel W, Arora D (2008). "A study of cultural bias in field guide determinations of mushroom edibility using the iconic mushroom, Amanita muscaria, as an example" (PDF). Economic Botany. 62 (3): 223–243. Bibcode:2008EcBot..62..223R. doi:10.1007/s12231-008-9040-9. S2CID   19585416. Archived from the original (PDF) on 2012-04-15.
  25. Nordic Council of Ministers (2012). "Section 1: Nordic Risk Assessments and Background on Edible Mushrooms, Suitable for Commercial Marketing and Background Lists. For Industry, Trade and Food Inspection. Background Information and Guidance Lists on Mushrooms". Mushrooms Traded As Food. Vol. 2. Denmark: Nordic Council of Ministers. p. 50. ISBN   978-92-893-2383-3.
  26. FDA Import Alert IA2502 Archived April 9, 2007, at the Wayback Machine
  27. "Production of mushrooms and truffles in 2019, Crops/Regions/World list/Production Quantity (pick lists)". UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2020. Retrieved 3 March 2021.
  28. John Fereira. "U.S. Mushroom Industry". Usda.mannlib.cornell.edu. Retrieved 2010-05-30.
  29. 1 2 "Wild Mushroom Warning. Mushroom Poisoning: Don't Invite "The Death Angel" to Dinner". US National Capital Poison Center, Washington, DC. 2017. Retrieved 11 January 2017.
  30. Barbee G, Berry-Cabán C, Barry J, Borys D, Ward J, Salyer S (2009). "Analysis of mushroom exposures in Texas requiring hospitalization, 2005–2006". Journal of Medical Toxicology. 5 (2): 59–62. doi:10.1007/BF03161087. PMC   3550325 . PMID   19415588.
  31. Osborne, Tegan (2016-02-03). "Deadly death cap mushrooms found in Canberra's inner-south as season begins early". ABC News. Retrieved 2 May 2016.
  32. Lapienytė, Jurgita (March 25, 2024). "AI tools can lead to severe mushroom poisoning". Cybernews. Retrieved 2024-03-31.
  33. McKnight, Karl B.; Rohrer, Joseph R.; McKnight Ward, Kirsten; MacKnight, Kent H.; MacKnight, Vera B. (2021). Peterson field guide to mushrooms of North America. Peterson field guides (2nd ed.). Boston: Houghton Mifflin Harcourt. pp. 32–35. ISBN   978-0-544-23611-0.
  34. 1 2 Arora 1986, p. 889.
  35. Kalač, Pavel; Svoboda, Lubomír (15 May 2000). "A review of trace element concentrations in edible mushrooms". Food Chemistry. 69 (3): 273–281. doi:10.1016/S0308-8146(99)00264-2.
  36. United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". FDA. Archived from the original on 2024-03-27. Retrieved 2024-03-28.
  37. "TABLE 4-7 Comparison of Potassium Adequate Intakes Established in This Report to Potassium Adequate Intakes Established in the 2005 DRI Report". p. 120. In: Stallings, Virginia A.; Harrison, Meghan; Oria, Maria, eds. (2019). "Potassium: Dietary Reference Intakes for Adequacy". Dietary Reference Intakes for Sodium and Potassium. pp. 101–124. doi:10.17226/25353. ISBN   978-0-309-48834-1. PMID   30844154. NCBI   NBK545428.
  38. Ba DM, Ssentongo P, Beelman RB, Muscat J, Gao X, Richie JP (2020). "Mushroom Consumption Is Associated with Low Risk of Cancer: A Systematic Review and Meta-Analysis of Observation Studies". Current Developments in Nutrition . 4 (2) nzaa044_006: 307. doi:10.1093/cdn/nzaa044_006. PMC   7258270 .
  39. Krittanawong C, Isath A, Hahn J, Wang Z, Fogg SE, Bandyopadhyay D, Jneid H, Virani SS, Tang WH (2021). "Mushroom Consumption and Cardiovascular Health: A Systematic Review". American Journal of Medicine . 134 (5): 637–642. doi:10.1016/j.amjmed.2020.10.035. PMID   33309597. S2CID   229179866.
  40. 1 2 3 Bowerman, S (March 31, 2008). "If mushrooms see the light". Los Angeles Times .
  41. 1 2 3 Koyyalamudi SR, Jeong SC, Song CH, Cho KY, Pang G (April 2009). "Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation". Journal of Agricultural and Food Chemistry . 57 (8): 3351–3355. Bibcode:2009JAFC...57.3351K. doi:10.1021/jf803908q. PMID   19281276.
  42. Kalaras MD, Beelman RB, Holick MF, Elias RJ (2012). "Generation of potentially bioactive ergosterol-derived products following pulsed ultraviolet light exposure of mushrooms (Agaricus bisporus)". Food Chemistry. 135 (2): 396–401. doi:10.1016/j.foodchem.2012.04.132. PMID   22868105.
  43. Jordan P. (2006). Field Guide to Edible Mushrooms of Britain and Europe. New Holland Publishers. p. 10. ISBN   978-1-84537-419-8.
  44. "The Forme of Cury". Project Gutenberg. Retrieved 17 March 2024.
  45. 1 2 Sayner, Adam (2021-09-27). "Can You Eat Mushroom Stems? How to Cook With Them". GroCycle. Retrieved 2025-10-02.
  46. Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki (2015-07-07). "In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions". Scientific Reports. 5 (1) 11907. Bibcode:2015NatSR...511907D. doi:10.1038/srep11907. ISSN   2045-2322. PMC   4493705 . PMID   26148792.
  47. "Why you can't really overcook mushrooms". www.pbs.org. 2022-07-20. Retrieved 2024-01-26.
  48. Arora 1986, p. 891.
  49. Arora 1986, pp. 890–92.
  50. Sullivan R, Smith JE, Rowan NJ (2006). "Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine". Perspect Biol Med. 49 (2): 159–70. doi:10.1353/pbm.2006.0034. PMID   16702701. S2CID   29723996.
  51. Hobbs CJ. (1995). Medicinal Mushrooms: An Exploration of Tradition, Healing & Culture. Portland, Oregon: Culinary Arts Ltd. p. 20. ISBN   978-1-884360-01-5.
  52. "Reishi mushroom". MedlinePlus, US National Library of Medicine. 19 January 2019. Retrieved 24 January 2019.
  53. Money, Nicholas P. (2016). "Are mushrooms medicinal?". Fungal Biology. 120 (4): 449–453. Bibcode:2016FunB..120..449M. doi: 10.1016/j.funbio.2016.01.006 . ISSN   1878-6146. PMID   27020147.
  54. Kavanagh F, Hervey A, Robbins WJ (September 1951). "Antibiotic substances from basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat". Proceedings of the National Academy of Sciences of the United States of America. 37 (9): 570–574. Bibcode:1951PNAS...37..570K. doi: 10.1073/pnas.37.9.570 . PMC   1063423 . PMID   16589015.
  55. Tilli Tansey; Lois Reynolds, eds. (2000). Post Penicillin Antibiotics: From acceptance to resistance?. Wellcome Witnesses to Contemporary Medicine. History of Modern Biomedicine Research Group. ISBN   978-1-84129-012-6. OL   12568269M. Wikidata   Q29581637.
  56. Kusakabe, Y; Yamauchi, Y; Nagatsu, C; Abe, H; Akasaki, K (1969). "Citromycin, a new antibiotic. I. Isolation and characterization". The Journal of Antibiotics. 22 (3): 112–8. doi: 10.7164/antibiotics.22.112 . PMID   4978096.
  57. "Coriolus versicolor". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. 3 October 2018. Retrieved 24 January 2019.
  58. "Lentinan (Shiitake)". Memorial Sloan Kettering Cancer Center, New York. 2017. Retrieved 11 January 2017.
  59. Sullivan, Richard; Smith, John E.; Rowan, Neil J. (2006). "Medicinal Mushrooms and Cancer Therapy: translating a traditional practice into Western medicine". Perspectives in Biology and Medicine. 49 (2): 159–70. doi:10.1353/pbm.2006.0034. PMID   16702701. S2CID   29723996.
  60. Borchers, A. T.; Krishnamurthy, A.; Keen, C. L.; Meyers, F. J.; Gershwin, M. E. (2008). "The Immunobiology of Mushrooms". Experimental Biology and Medicine. 233 (3): 259–76. CiteSeerX   10.1.1.546.3528 . doi:10.3181/0708-MR-227. PMID   18296732. S2CID   5643894.

Sources